首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration.  相似文献   

2.
We revisit the airway wall model of Lambert et. al. (Lambert RK, Wiggs BR, Kuwano K, Hogg JC, and Pare PD. J Appl Physiol 74: 2771-2781, 1993). We examine in detail the notion of a general airway bistability such that the airway lumen can suddenly decrease from a relatively open to a relatively closed condition without needing additional increase in active airway smooth muscle (ASM) tension during the stimulation. The onset of this bistability is an emergent consequence of the balance of forces associated with airway wall properties, parenchymal tissue properties, maximum lung elastic recoil, and the maximum stress that the ASM can generate. In healthy lungs, we find that all these properties reside in conditions that largely prevent the emergence of the bistability even during maximum ASM stimulation. In asthmatic airways, however, the airway wall and ASM remodeling conditions can tip the balance so as to promote the onset of the bistability at a lower dose of ASM stimulation (enhanced sensitivity) and then work to amplify the maximum constriction reached by each airway (enhanced reactivity). Hence, a larger fraction of asthmatic airways can display overall airway hyperreactivity. Simulations studies examine the role of increasing ASM maximum tension, airway wall stiffening, reduced lung volume, and decreased parenchymal tethering. Results predict that the single most important factor causing this airway hyperreactivity is amplified maximum ASM tension and not a thickening of the airway wall per se.  相似文献   

3.
4.
Brown, Robert H., Wayne Mitzner, Yonca Bulut, and ElizabethM. Wagner. Effect of lung inflation in vivo on airways with smoothmuscle tone or edema. J. Appl.Physiol. 82(2): 491-499, 1997.Fibrousattachments to the airway wall and a subpleural surrounding pressurecan create an external load against which airway smooth muscle mustcontract. A decrease in this load has been proposed as a possible causeof increased airway narrowing in asthmatic individuals. To study theinteraction between the airways and the surrounding lung parenchyma, weinvestigated the effect of lung inflation on relaxed airways, airwayscontracted with methacholine, and airways made edematous by infusion ofbradykinin into the bronchial artery. Measurements were made inanesthetized sheep by using high-resolution computed tomography tovisualize changes in individual airways. During methacholine infusion,airway area was decreased but increased minimally with increases intranspulmonary pressure. Bradykinin infusion caused a 50% increase inairway wall area and a small decrease in airway luminal area. Incontrast to airways contracted with methacholine, the luminal areaafter bradykinin increased substantially with increases intranspulmonary pressure, reaching 99% of the relaxed area at totallung capacity. Thus airway edema by itself did not prevent fulldistension of the airway at lung volumes approaching total lungcapacity. Therefore, we speculate that if a deep inspiration fails torelieve airway narrowing in vivo, this must be a manifestation ofairway smooth muscle contraction and not airway wall edema.

  相似文献   

5.
Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM) proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca2+ ([Ca2+]i) responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca2+ regulatory proteins leading to increased store operated Ca2+ entry (SOCE) and cell proliferation. Using isolated human ASM (hASM) cells, incubated in the presence and absence cigarette smoke extract (CSE) we determined ([Ca2+]i) responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS) and cytokine generation. CSE enhanced [Ca2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.  相似文献   

6.
Altered extracellular matrix (ECM) deposition contributing to airway wall remodeling is an important feature of asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanisms of this process are poorly understood. One of the key pathological features of these diseases is thickening of airway walls. This thickening is largely to the result of airway smooth muscle (ASM) cell hyperplasia and hypertrophy as well as increased deposition of ECM proteins such as collagens, elastin, laminin, and proteoglycans around the smooth muscle. Many growth factors and cytokines, including fibroblast growth factor (FGF)-1, FGF-2, and transforming growth factor (TGF)-α1, that are released from the airway wall have the potential to contribute to airway remodeling, revealed by enhanced ASM proliferation and increased ECM protein deposition. TGF-α1 and FGF-1 stimulate mRNA expression of collagen I and III in ASM cells, suggesting their role in the deposition of extracellular matrix proteins by ASM cells in the airways of patients with chronic lung diseases. Focus is now on the bidirectional relationship between ASM cells and the ECM. In addition to increased synthesis of ECM proteins, ASM cells can be involved in downregulation of matrix metalloproteinases (MMPs) and upregulation of tissue inhibitors of metalloproteinases (TIMPs), thus eventually contributing to the alteration in ECM. In turn, ECM proteins promote the survival, proliferation, cytokine synthesis, migration, and contraction of human airway smooth muscle cells. Thus, the intertwined relationship of ASM and ECM and their response to stimuli such as chronic inflammation in diseases such as asthma and COPD contribute to the remodeling seen in airways of patients with these diseases.  相似文献   

7.
8.
Although airway remodeling and inflammation in asthma can amplify the constriction response of a single airway, their influence on the structural changes in the whole airway network is unknown. We present a morphometric model of the human lung that incorporates cross-sectional wall areas corresponding to the adventitia, airway smooth muscle (ASM), and mucosa for healthy and mildly and severely asthmatic airways and the influence of parenchymal tethering. A heterogeneous ASM percent shortening stimulus is imposed, causing distinct constriction patterns for healthy and asthmatic airways. We calculate lung resistance and elastance from 0.1 to 5 Hz. We show that, for a given ASM stimulus, the distribution of wall area in asthmatic subjects will amplify not only the mean but the heterogeneity of constriction in the lung periphery. Moreover, heterogeneous ASM shortening that would produce only mild changes in the healthy lung can cause hyperresponsive changes in lung resistance and elastance at typical breathing rates in the asthmatic lung, even with relatively small increases in airway resistance. This condition arises when airway closures occur randomly in the lung periphery. We suggest that heterogeneity is a crucial determinant of hyperresponsiveness in asthma and that acute asthma is more a consequence of extensive airway wall inflammation and remodeling, predisposing the lung to produce an acute pattern of heterogeneous constriction.  相似文献   

9.
Short-term variability of airway caliber-a marker of asthma?   总被引:1,自引:0,他引:1  
Variability in airway caliber is a characteristic feature of asthma. Previous studies reported that the variability in respiratory system impedance (Zrs), measured by the forced oscillation technique during several minutes of tidal breathing, is increased in asthma and may be a marker of inherent instability of the airways. The aims of this study were to determine if short-term variability in impedance correlates with peak expiratory flow (PEF) variability or airway hyperresponsiveness (AHR). The SD of log-transformed impedance (lnZrsSD) was measured as a marker of short-term variability and compared with the diurnal variability of PEF over 2 wk in 28 asthmatic and 7 nonasthmatic subjects and with AHR to histamine in a cohort of 17 asthmatic and 82 nonasthmatic subjects. In addition, lnZrsSD was measured in eight nonasthmatic subjects before and after methacholine challenge in the upright and supine positions. There were no significant differences in lnZrsSD between asthmatic and nonasthmatic subjects (P = 0.68). Furthermore, in asthmatic subjects, lnZrsSD did not correlate with diurnal variability of PEF (rs = -0.12 P = 0.54) or with AHR to histamine (r = 0.10, P = 0.71). Neither methacholine challenge nor supine posture caused any significant change in lnZrsSD. We conclude that our findings do not support previous reports about the utility of short-term variability of impedance. Our findings suggest that, using standard methods for forced oscillometry, impedance variability does not provide clinically useful information about the severity of asthma.  相似文献   

10.
The extracellular matrix (ECM) is the tissue microenvironment that regulates the characteristics of stromal and systemic cells to control processes such as inflammation and angiogenesis. Despite ongoing anti-inflammatory treatment, low levels of inflammation exist in the airways in asthma, which alters ECM deposition by airway smooth muscle (ASM) cells. The altered ECM causes aberrant behaviour of cells, such as endothelial cells, in the airway tissue. We therefore sought to characterize the composition and angiogenic potential of the ECM deposited by asthmatic and non-asthmatic ASM. After 72 hours under non-stimulated conditions, the ECM deposited by primary human asthmatic ASM cells was equal in total protein, collagen I, III and fibronectin content to that from non-asthmatic ASM cells. Further, the matrices of non-asthmatic and asthmatic ASM cells were equivalent in regulating the growth, activity, attachment and migration of primary human umbilical vein endothelial cells (HUVECs). Under basal conditions, asthmatic and non-asthmatic ASM cells intrinsically deposit an ECM of equivalent composition and angiogenic potential. Previous findings indicate that dysregulation of the airway ECM is driven even by low levels of inflammatory provocation. This study suggests the need for more effective anti-inflammatory therapies in asthma to maintain the airway ECM and regulate ECM-mediated aberrant angiogenesis.  相似文献   

11.
12.
Airway hyperresponsiveness in mice with allergic airway inflammation can be attributed entirely to exaggerated closure of peripheral airways (Wagers S, Lundblad LK, Ekman M, Irvin CG, and Bates JHT. J Appl Physiol 96: 2019-2027, 2004). However, clinical asthma can be characterized by hyperresponsiveness of the central airways as well as the lung periphery. We, therefore, sought to establish a complementary model of hyperresponsiveness in the mouse due to excessive narrowing of the airways. We treated mice with a tracheal instillation of the cationic protein poly-l-lysine (PLL), hypothesizing that this would reduce the barrier function of the epithelium and thereby render the underlying airway smooth muscle more accessible to aerosolized methacholine. The PLL-treated animals were hypersensitive to methacholine: they exhibited an exaggerated response to submaximal doses but had a maximal response that was similar to controls. With the aid of a computational model of the mouse lung, we conclude that the methacholine responsiveness of PLL-treated mice is fundamentally different in nature to the hyperresponsiveness that we found previously in mice with allergically inflamed lungs.  相似文献   

13.
Proteoglycans (PG) have important effects on the mechanical properties of tissues and the phenotype of various structural cells. Little is known about changes in PG deposition in the airways in animal models of asthma. We studied changes in PG in the airway wall of Brown Norway rats sensitized to ovalbumin (OA) and exposed to repeated OA challenge. Control (Sal) animals were sensitized and challenged with saline. After the 3rd challenge, animals were killed and lungs fixed in formalin. Tissue sections were incubated with antibodies to the small, leucine-rich PG, decorin, and biglycan and collagen type I. Airways were classified according to basement membrane perimeter length (< or =0.99, 1-2.99, and > or =3 mm). Decorin, biglycan, and collagen type I were increased in the airways of OA vs. Sal rats. Remodeling was most prominent in central airways. The distribution of PG differed with respect to the subepithelial vs. airway smooth muscle (ASM) vs. adventitial layer. Whereas biglycan was readily detected within the ASM, decorin and collagen were detected outside the ASM and especially in the adventitial layer. Differences in the distribution of these molecules within the layers of the airway wall may reflect their specific functional roles.  相似文献   

14.
A recent study has reported that the application of thermal energy delivered through a bronchoscope (bronchial thermoplasty) impairs the ability of airway smooth muscle to shorten in response to methacholine (MCh)(Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, and Leff AR. J Appl Physiol 97: 1946-1953, 2004). If such a technique is successful, it has the potential to serve as a therapy to attenuate airway narrowing in asthmatic subjects regardless of the initiating cause that stimulates the smooth muscle. In the present study, we have applied high-resolution computed tomography to accurately quantify the changes in airway area before and after a standard MCh aerosol challenge in airways treated with bronchial thermoplasty. We studied a total of 193 airways ranging from 2 to 15 mm in six dogs. These were divided into treated and control populations. The MCh dose-response curves in untreated airways and soon-to-be-treated airways were superimposable. In contrast, the dose-response curves in treated airways were shifted upward at all points, showing a significantly decreased sensitivity to MCh at both 2 and 4 wk posttreatment. These results thus show that treated airways have significantly increased luminal area at any dose of inhaled MCh compared with untreated airways. The work in this study thus supports the underlying concept that impairing the smooth muscle may be an effective treatment for asthma.  相似文献   

15.
β(2)-Adrenergic receptor (β2AR) agonists induce airway relaxation via cAMP. Phosphodiesterase (PDE)s degrade and regulate cAMP, and in airway smooth muscle (ASM) cells PDE4D degrades cAMP. Long-acting β(2)-agonists are now contraindicated as monotherapy for asthma, and increased PDE4D has been speculated to contribute to this phenomenon. In this study we investigated the expression of PDE4D in asthmatic and nonasthmatic ASM cells and its regulation by formoterol and budesonide. Primary ASM cells from people with or without asthma were stimulated with transforming growth factor (TGF)-β(1), formoterol, and/or budesonide. PDE4D mRNA was assessed by real-time PCR, or PCR to assess splice variant production. PDE4D protein was assessed by Western blotting, and we investigated the effect of formoterol on cAMP production and PDE activity. Interleukin (IL)-6 was assessed using ELISA. PDE4D mRNA was dose dependently upregulated by formoterol, with a single splice variant, PDE4D5, present. Formoterol did not induce PDE4D protein at time points between 3 to 72 h, whereas it did induce and increase IL-6 secretion. We pretreated cells with actinomycin D and a proteasome inhibitor, MG132, and found no evidence of alterations in mRNA, protein expression, or degradation of PDE4D. Finally PDE activity was not altered by formoterol. This study shows, for the first time, that PDE4D5 is predominantly expressed in human ASM cells from people with and without asthma and that formoterol does not upregulate PDE4D protein production. This leads us to speculate that continual therapy with β2AR agonists is unlikely to cause PDE4-mediated tachyphylaxis.  相似文献   

16.
The protease-activated receptor-2 (PAR-2) is present on human airway smooth muscle (ASM) cells and can be activated by mast cell tryptase, trypsin, or an activating peptide (AP). Trypsin induced significant increases in PGE2 release from human ASM cells after 6 and 24 h and also induced cyclooxygenase (COX)-2 mRNA expression and COX-2 protein. Tryptase and the PAR-2 AP did not alter PGE2 release or COX-2 protein levels, suggesting a lack of PAR-2 involvement. When we compared results in asthmatic and nonasthmatic muscle cells, both trypsin and bradykinin induced less PGE2 from asthmatic ASM cells, and bradykinin induced significantly less COX-2 mRNA in asthmatic cells. Significantly less PGE2 was released from proliferating ASM cells from asthmatic patients. In conclusion, trypsin induces PGE2 release and COX-2 in human ASM cells, which is unlikely to be via PAR-2 activation. In addition, ASM cells from asthmatic patients produce significantly less PGE2 and COX-2 compared with nonasthmatic cells. These findings may contribute to the increase in muscle mass evident in asthmatic airways.  相似文献   

17.
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.  相似文献   

18.
Mechanical forces affect both the function and phenotype of cells in the lung. In this symposium, recent studies were presented that examined several aspects of biomechanics in lung cells and their relationship to disease. Wound healing and recovery from injury in the airways involve epithelial cell spreading and migration on a substrate that undergoes cyclic mechanical deformation; enhanced green fluorescent protein-actin was used in a stable cell line to examine cytoskeletal changes in airway epithelial cells during wound healing. Eosinophils migrate into the airways during asthmatic attacks and can also be exposed to cyclic mechanical deformation; cyclic mechanical stretch caused a decrease in leukotriene C(4) synthesis that may be dependent on mechanotransduction mechanisms involving the production of reactive oxygen species. Recent studies have suggested that proinflammatory cytokines are increased in ventilator-induced lung injury and may be elevated by overdistention of the lung tissue; microarray analysis of human lung epithelial cells demonstrated that cyclic mechanical stretch alone profoundly affects gene expression. Finally, airway hyperresponsiveness is a basic feature of asthma, but the relationship between airway hyperresponsiveness and changes in airway smooth muscle (ASM) function remain unclear. New analysis of the behavior of the ASM cytoskeleton (CSK) suggests, however, that the CSK may behave as a glassy material and that glassy behavior may account for the extensive ASM plasticity and remodeling that contribute to airway hyperresponsiveness. Together, the presentations at this symposium demonstrated the remarkable and varied roles that mechanical forces may play in both normal lung physiology as well as pathophysiology.  相似文献   

19.
王敏  李蓓  张光环 《生物磁学》2009,(14):2628-2630,F0002
目的:探讨哮喘小鼠气道重构模型的建立的方法。方法:SPF级BALB/C6-8周龄雌性小鼠40只随机分成正常对照组、哮喘模型组,每组20只。哮喘组经卵蛋白(OVA)混悬液0.2ml致敏并反复雾化吸入2周、4周,正常对照组由生理盐水代替。各组分别于末次雾化激发后进行取材,收集肺组织,制作石蜡切片,HE染色观察气道中嗜酸性粒细胞;Masson三色染色法观察气道周围胶原沉积情况;PAS染色法观察气道黏液分泌情况;测定单位气道面积基底膜周径(Pbm)、管壁总面积(WAt)、内壁面积(wAi)、平滑肌面积(WAm)、胶原面积(Wcol)、粘液面积。结果:哮喘模型组WAt/Pbm、WAi/Pbm、WAm/Pbm、Wcol/Pbm、粘液分泌面积较正常对照组明显增加。哮喘4周组上述指标均高于其对应2周组(P〈0.05)。结论:反复的过敏原(OVA)吸入可导致哮喘气道重构的发生,是一种较好的建立哮喘小鼠气道重构模型的的方法。  相似文献   

20.
The computational model for expiratory flow in humans of Lambert and associates (J. Appl. Physiol. Respirat. Environ. Exercise Physiol. 52: 44-56, 1982) was used to investigate the effect of bronchial constrictions in three airway zones on the density dependence of maximal expiratory flow. It was found that constriction of the peripheral airways (less than 2 mm diam) reduced density dependence and increased the volume of isoflow. Constriction of the larger intraparenchymal airways resulted in increased density dependence at low lung volumes and essentially normal values at other volumes. The volume of isoflow was reduced. Extraparenchymal (but intrathoracic) airway constriction caused no change in the volume of isoflow but caused increased density dependence at the higher lung volumes. It was shown that in these model simulations the addition of extraparenchymal constriction to intraparenchymal constriction causes essentially no changes in density dependence. An increased volume of isoflow and significantly decreased density dependence at 50 and 25% vital capacity were produced by simulated constrictions only in the peripheral airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号