首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
N-(2-Pyridyl)acetamide (aapH) complexes of palladium(II), cobalt(II), nickel(II), and copper(II) have been studied by means of magnetic susceptibilities, and infrared, electronic, and PMR spectra. In the octahedral complexes M(aapH)2X2(M = Co, Ni, Cu; X = Cl, Br, NCS, NO3), bidentate aapH is chelated through the pyridine-N and amid-O atomes, whereas in the square-planar Pd(aapH)2X2 (X = Cl, Br) unidentate aapH is coordinated through the pyridine-N atom alone. Under alkaline conditions aapH is deprotonated in the presence of palladium(II) to form Pd(aap)2·4H2O, aap being an anionic bidentate ligand and chelating through the pyridine-N and amide-O atoms.  相似文献   

2.
Four novel trinuclear copper(II)/nickel(II) complexes with four trianionic pentadentate ligands, N-(3-t-butylbenzoyl)-5-nitrosalicylhydrazide (H33-t-bbznshz), N-(3,5-dimethylbenzoyl)salicylhydrazide (H33,5-dmbzshz), N-(phenylacetyl)-5-bromosalicylhydrazide (H3pabshz) and N-(3-t-butylbenzoyl)salicylhydrazide (H33-t-bbzshz) have been synthesized and characterized by X-ray crystallography. These trinuclear compounds all have an M–N–N–M–N–N–M core formed by three metal ions and two ligands. The geometries of three Cu(II) ions in compound Cu3(3-t-bbznshz)2(H2O)(DMF)(py)2 · DMF (1) alternate between distorted square pyramidal and square planar, while in compound Cu3(3,5-dmbzshz)2(py)2 (2), they are all square planar. Three Ni(II) ions in compound Ni3(pabshz)2(DMF)2(py)2 (3) and Ni3(3-t-bbzshz)2(py)4 · 2H2O (4) follow square-planar/octahedral/square-planar coordination geometry. Compounds 1, 2 and 4 are bent trinuclear, with the bend angles of 156.4°, 141.49° and 127.1°, respectively, while the three nickel ions in compound 3 are strictly linear, with an angle of 180°. Studies on the trinuclear Ni(II) complexes show that the β-branched N-acylsalicylhydrazide ligands with sterically flexible Cα methylene groups are easier to yield linear trinuclear Ni(II) complexes, while α-branched N-acylsalicylhydrazides ligands tend to form bent trinuclear Ni(II) complexes. Antibacterial screening data indicate that the trinuclear Cu(II) compound 2 is more active than 1 and mononuclear Cu(II) compound, bent trinuclear Ni(II) compound 4 is more active than linear compound 3 and less active than tetranuclear nickel compound in the previous study.  相似文献   

3.
A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.  相似文献   

4.
Copper(II) and nickel(II) complexes of potentially N2O4 Schiff base ligands 2-({[2-(2-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}ethoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L1) and 2-({[2-(4-{2-[(1-{2-hydroxy-5-[2-phenyl-1-diazenyl]phenyl}methylidene)amino] phenoxy}butoxy) phenyl]imino}methyl)4-[2-phenyl-1-diazenyl]phenol (H2L2) prepared of 5-phenylazo salicylaldehyde (1) and two various diamines 2-[2-(2-aminophenoxy)ethoxy]aniline (2) and 2-[4-(2-aminophenoxy)butoxy]aniline (3) were synthesized and characterized by a variety of physico-chemical techniques. The single-crystal X-ray diffractions are reported for CuL1 and NiL2. The CuL1 complex contains copper(II) in a near square-planar environment of N2O2 donors. The NiL2 complex contains nickel(II) in a distorted octahedral geometry coordination of N2O4 donors. In all complexes, H2L1 behaves as a tetradentate and H2L2 acts as a hexadentate ligand. Cyclic voltammetry of copper(II) complexes indicate a quasi-reversible redox wave in the negative potential range.  相似文献   

5.
《Inorganica chimica acta》2001,312(1-2):183-187
Cadmium(II) complexes with 2-[(2-aminoethyl)amino]ethanethiol (HL1), 2-[(3-aminopropyl)amino]ethanethiol (HL2), 2-[(2-pyridylmethyl)amino]ethanethiol (HL3), and 2-[[2-(2-pyridyl)ethyl]amino]ethanethiol (HL4), [Cd(L1)](ClO4) (1), [Cd(L2)](ClO4)·1/2CH3OH (2), [Cd{Cd(L2)2}2](ClO4)2·CH3CON(CH3)2 (3a·CH3CON(CH3)2), [Cd{Cd(L2)2}2]Cl2·2CH3OH (3b·2CH3OH), [Cd{Cd(L3)2}2](ClO4)2 (4), [Cd(L4)](ClO4) (5), have been synthesized and characterized by measurements of the infrared and electronic spectra. The X-ray crystal structures show that 3a and 3b have a thiolato-bridged trinuclear core with a linear arrangement of three metal atoms.  相似文献   

6.
Novel N-N-N-O-type of tetradentate ligands H3obap (H3obap = oxamido-N-aminopropyl-N′-benzoic acid) and H3maeb (H3maeb = malamido-N-aminoethyl-N′-benzoic acid) and the corresponding square-planar copper(II) complexes have been prepared and characterized. The obap3− and maeb3− ligands coordinate to the copper(II) ion via four ligating atoms (three deprotonated atoms: one carboxylate oxygen and two deprotonated amide nitrogens; one amine nitrogen) with in-plane square chelation. A four coordinate, square-planar geometry has been established crystallographically for the binuclear Na2[Cu(obap)]2 · 2H2O complex. Structural data correlating the square-planar geometry of the [Cu(obap)] unit and an extensive strain analysis are discussed in relation to the information obtained for similar complexes. The infrared and electronic absorption spectra of the complexes are discussed in comparison to the related complexes of known geometries. Antibacterial activity of ligands and copper(II) complexes towards common Gram-negative and Gram-positive bacteria are reported as well.  相似文献   

7.
A set of two Cu(II) complexes, [Cu(cdXsalen)] and [Cu(cdXsalMeen)] derived from Schiff base ligands (H2cdXsalen: methyl-2-{[2-(2-X-phenyl)methylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate and H2cdXsalMeen: methyl-2-{[1-methyl-2-(2-X-phenyl)methylidynenitrilo]ethyl}amino-1-cyclopenteneithiocarb-oxylate where X = hydroxyl, methoxy, nitro, sodiumsulfite, chloro, bromo and H2cdMesalen: methyl-2-{[2-(2-hydroxyphenyl)ethylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate; H2cdPhsalen: methyl-2-{[2-(2-hydroxyphenyl)phenylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate; H2cdMesalMeen: methyl-2-{[1-methyl-2-(2-hydroxyphenyl)ethylidynenitrilo]ethyl}amino-1-cyclopentenedithiocarboxylate; H2cdPhsalMeen: methyl-2-{[1-methyl-2-(2-hydroxyphenyl)phenylidynenitrilo]ethyl}amino-1-cyclopentenedi-thiocarboxylate) with an unsymmetric NNOS coordination sphere have been synthesized and characterized by elemental analysis, IR, UV-Vis and mass spectrometry. The thermodynamic formation constants of the complexes were measured spectrophotometrically, at constant ionic strength 0.1 M (NaClO4), at 25 °C in DMF solvent. The trend of the complex formation for copper is as follow:
[Cu(cdMesalen)]>[Cu(cdsalen)]>[Cu(cdPhsalen)][Cu(cdMesalMeen)]>[Cu(cdsalMeen)]>[Cu(cdPhsalMeen)]  相似文献   

8.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

9.
The present work was undertaken to examine and compare some biologically important properties of peroxo compounds of V(V) and W(VI) containing biogenic species as ancillary ligand. New anionic peroxovanadate(V) complex of the type Na[VO(O2)2(triglycine)]·3H2O (pV1) and a molecular peroxotungstate(VI) [WO(O2)2(triglycine)]·3H2O (pW1) were synthesized and characterized for the purpose and their stability in solution was ascertained. Studies on kinetics of inhibition of alkaline phosphatase activity by the newly synthesized compounds and series of dipeptide and amino acid containing peroxo complexes of vanadium and tungsten synthesized previously by us viz., Na[VO(O2)2(gly-gly)(H2O)]·H2O (gly-gly = glycyl-glycine), Na[VO(O2)2(asn)]·H2O (asn = asparagine), Na[VO(O2)2(gln)]·H2O (gln = glutamine), and [WO(O2)2(gly-gly)(H2O)]·3H2O, revealed that each of these species is a potent mixed-type inhibitor of the enzyme. Significant difference was noted between the peroxovanadium (pV) and peroxotungsten (pW) compounds in terms of their oxidant activity with reduced glutathione.  相似文献   

10.
A series of heterobimetallic polymeric complexes of manganese, cobalt, zinc, cadmium and nickel, [M(Mo2O5L2)(MeOH)2(H2O)2]n·nH2O {M = Mn (2), n = 1, Co (3), n = 0, Zn (4), n = 1 and Cd (5), n = 1} and [Ni(Mo2O5L2)(MeOH)(H2O)3]n·2H2O·MeOH (6) have been synthesized form the reaction of [{Na4(H2O)4(μ-H2O)2} ⊂ (Mo2O5L2)2] (1) {LH2 = 2-(3,5-di-tert-butyl-2-hydroxybenzylamino)acetic acid} with the corresponding metal salts. The complexes have been structurally characterized. The Complexes, 3 and 6 undergo thermal decomposition to afford mixed oxides of the type, MMoO4·MoO3 {M = Co or Ni}.  相似文献   

11.
Two mononuclear copper(II) complexes, [Cu(C15H16NO2)2] (1) and [Cu(C6H9N2O4)2·3H2O] (2·3H2O), were synthesised and structurally characterised by single-crystal X-ray analysis. The copper(II) atom adopts a square-planar environment in complex 1, while the geometry in 2·3H2O could be described as the distorted square pyramidal. Complexes 1 and 2·3H2O were evaluated for their inhibitory activities against Helicobacter pylori (H. pylori) urease in vitro. They both were found to have strong inhibitory activities against H. pylori urease comparable to that of acetohydroxamic acid (AHA). A docking simulation was performed to position 2 into the H. pylori urease active site to determine the probable binding conformation.  相似文献   

12.
Reaction of bis(2-{pyrid-2-yl}ethyl)amine with 2-bromoethanol in the presence of Na2CO3 yields the title ligand, LH. Treatment of LH with the CuBr2 or Zn(O2CMe)2 · 2H2O yields pure crystalline [CuBr(LH)]Br · H2O (1 · H2O) and [Zn2(O2CMe)2(μ-O2CMe)(μ-L)] (2). Reaction of LH with Cu(O2CMe)2 · H2O affords a low yield of [Cu2Cl2(μ-O2CMe)(μ-L)] (3), the Cl ligands apparently originating from the CH2Cl2 crystallization solvent. Compound 1 · H2O is a near-regular square-pyramidal complex with a neutral, protonated LH ligand. In contrast, 2 and 3 are both unusual unsymmetric dinuclear complexes, with a five-coordinate [ML(O2CMe)] (M = Zn or Cu) unit linked to a second metal ion through the deprotonated ligand alkoxide donor and O,O′-bridging acetate ligand.  相似文献   

13.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

14.
Complexes of Co(II), Ni(lI), Cu(II), Zn(II) and Pt(II) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H) were prepared and characterized by elemental analyses, conductance measurement and spectral studies. On the basis of these studies a distorted octahedral structure for [Co(1-iqtsc)2]·2H2O, a distorted trigonal-bipyramidal structure for [Ni- (1-iqtsc-H)Cl2], [Cu(1-iqtsc-H)Cl2] and [Zn(1-iqtsc- H)(OAc)2]·H2O and a square-planar structure for [Pt(1-iqtsc)Cl] are suggested. All these metal(II) complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. Except for Pt(Il), the complexes were found to possess significant activity; the Ni(II) complex showed a T/C value of 161 at the optimum dosage.  相似文献   

15.
Four complexes [Pd(L)(bipy)Cl]·4H2O (1), [Pd(L)(phen)Cl]·4H2O (2), [Pt(L)(bipy)Cl]·4H2O (3), and [Pt(L)(phen)Cl]·4H2O (4), where L = quinolinic acid, bipy = 2,2’-bipyridyl, and phen = 1,10-phenanthroline, have been synthesized and characterized using IR, 1H NMR, elemental analysis, and single-crystal X-ray diffractometry. The binding of the complexes to FS-DNA was investigated by electronic absorption titration and fluorescence spectroscopy. The results indicate that the complexes bind to FS-DNA in an intercalative mode and the intrinsic binding constants K of the title complexes with FS-DNA are about 3.5?×?104 M?1, 3.9?×?104 M?1, 6.1?×?104 M?1, and 1.4?×?105 M?1, respectively. Also, the four complexes bind to DNA with different binding affinities, in descending order: complex 4, complex 3, complex 2, complex 1. Gel electrophoresis assay demonstrated the ability of the Pt(II) complexes to cleave pBR322 plasmid DNA.  相似文献   

16.
The new complex compounds [RuLCl(p‐cymene)] ? 3H2O and [NiL2(H2O)2] ? 3H2O (L: 1‐{4‐[(2‐hydroxy‐3‐methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT‐IR, 1H‐ and 13C‐NMR, mass spectroscopy, TGA, elemental analysis, X‐ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes. To determine the antioxidant properties of Schiff base ligand and its Ni(II), Ru(II) metal complexes, FRAP, CUPRAC, ABTS and DPPH methods of antioxidant assays were used. Moreover, enzyme inhibition of complexes was evaluated against carbonic anhydrase I and II isoenzymes (CA I and CA II) and acetylcholinesterase (AChE). For CA I and CA II, the best inhibition enzymes, was the Ni(II) complex with 62.98±18.41, 86.17±23.62 Ki values, whereas this inhibition effect showed ligand with 24.53±2.66 Ki value for the AChE enzyme.  相似文献   

17.
Two new trinuclear complexes, Cu3L2(py)2 (1) and Ni3L2(py)4 (2), have been synthesized and characterized, where L3− is N-2-methyl-acryloyl-salicylhydrazidate. Central metal ion and two terminal metal ions in the two complexes are combined by two bridging deprotonated L3− ligands, forming a bent trinuclear structure unit with an M-N-N-M-N-N-M core. The bent angles in complexes 1 and 2 are 167.6(1)° and 75.4(1)°, respectively. Three nickel ions in compound 2 exhibit alternating square-planar and octahedral geometries, while three copper ions in compound 1 follow square-planar mode. The studies in solution integrity and stability of compounds 1 and 2 show they are soluble and stable in DMF. UV-Vis titrations demonstrate compound 1 is stable in DMF even in the presence of excess metal ions. Antibacterial screening data indicate the two compounds all have stronger antimicrobial activities against the tested microorganisms than ligand. The trinuclear copper compound 1 is more active than monocopper compounds in the previous study, and the trinuclear nickel compound 2 is less active than tetranuclear nickel compound in the previous study.  相似文献   

18.
Two new platinum(II) complexes, trans-[Pt(2-mpy)2]·4H2O (1) and [PtCl(2-pyc)(2-hmpy)]·H2O (2), where 2-hmpy = 2-(hydroxymethyl)pyridine, 2-mpy = deprotonated 2-hmpy and 2-pyc = pyridine-2-carboxylate, have been synthesized and characterized by elemental analysis, IR, NMR, and X-ray crystallography. The DNA binding affinities of these complexes for Fish Sperm DNA (FS-DNA) were investigated using fluorescence, viscosity, thermal denaturation and gel electrophoresis measurements. Fluorescence analysis indicates that complex 1 binds to DNA by a single intercalative mechanism, while complex 2 exhibits two types of interactions such as intercalation and covalent binding. Gel electrophoresis assay demonstrates ability of the complexes to cleavage the supercoiled pBR322 plasmid DNA. The in vitro cytotoxicities of both complexes were preliminarily evaluated and the cytotoxicity of complex 1 against the human lung cancer cells (H1299) is similar to oxaliplatin, but higher than transplatin and carboplatin.  相似文献   

19.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

20.
Four palladium(II) and platinum(II) complexes of 2,2′-dipyridylamine (dpya) with saccharinate (sac), cis-[Pd(dpya)(sac)2]·H2O (1), cis-[Pt(dpya)(sac)2]·H2O (2), [Pd(dpya)2](sac)2·2H2O (3) and [Pt(dpya)2](sac)2·2H2O (4), have been synthesized and characterized by elemental analysis, IR, NMR, TG-DTA and X-ray diffraction. In 1 and 2, the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of dpya, resulting in a neutral square-planar coordination sphere, while in 3 and 4, the metal ions are coordinated by two dpya ligands to generate square-planar cationic species, which are stabilized by two sac counter-ions. The mononuclear species of 1 and 2 interact each other through weak intermolecular N-H?O, C-H?O and π?π interactions to form a three-dimensional network, while the ions of 3 and 4 are connected by N-H?N and OW-H?O hydrogen bonds into one-dimensional chains. On heating at 250 °C, the solid cationic complexes of 3 and 4 convert to corresponding anhydrous neutral complexes of 1 and 2 after elimination of a dpya ligand. In addition, all complexes 1-4 are luminescent at room temperature and their emissions seem to be attributed to the MLCT fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号