首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
We have examined the modulation by internal protons of cyclic nucleotide-gated (CNG) channels cloned from bovine olfactory receptor cells and retinal rods. CNG channels were studied in excised inside-out membrane patches from Xenopus laevis oocytes previously injected with the mRNA encoding for the subunit 1 of olfactory or rod channels. Channels were activated by cGMP or cAMP, and currents as a function of cyclic nucleotide concentrations were measured as pHi varied between 7.6 and 5.0. Increasing internal proton concentrations caused a partial blockage of the single-channel current, consistent with protonation of a single acidic site with a pK1 of 4.5-4.7, both in rod and in olfactory CNG channels. Channel gating properties were also affected by internal protons. The open probability at low cyclic nucleotide concentrations was greatly increased by lowering pHi, and the increase was larger when channels were activated by cAMP than by cGMP. Therefore, internal protons affected both channel permeation and gating properties, causing a reduction in single-channel current and an increase in open probability. These effects are likely to be caused by different titratable groups on the channel.  相似文献   

2.
Gating by cGMP and voltage of the alpha subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 microM), the current displayed strong outward rectification. At low and high (700 microM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P(o). Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P(o) at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from -100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 microM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose-response relation at -100 mV was shifted to the right and saturated at significantly lower P(o) values with respect to that at +100 mV (0.77 vs. 0.96). P(o) was determined as function of the [cGMP] (at +100 and -100 mV) and voltage (at 20, 70, and 700 microM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels adequately.  相似文献   

3.
Pun RY  Kleene SJ 《Biophysical journal》2003,84(5):3425-3435
The basal conductance of unstimulated frog olfactory receptor neurons was investigated using whole-cell and perforated-patch recording. The input conductance, measured between -80 mV and -60 mV, averaged 0.25 nS in physiological saline. Studies were conducted to determine whether part of the input conductance is due to gating of neuronal cyclic-nucleotide-gated (CNG) channels. In support of this idea, the neuronal resting conductance was reduced by each of five treatments that reduce current through CNG channels: external application of divalent cations or amiloride; treatment with either of two adenylate cyclase inhibitors; and application of AMP-PNP, a competitive substrate for adenylate cyclase. The current blocked by divalent cations or by a cyclase inhibitor reversed near 0 mV, as expected for a CNG current. Under physiological conditions, gating of CNG channels contributes approximately 0.06 nS to the resting neuronal conductance. This implies a resting cAMP concentration of 0.1-0.3 micro M. A theoretical model suggests that a neuron containing 0.1-0.3 micro M cAMP is poised to give the largest possible depolarization in response to a very small olfactory stimulus. Although having CNG channels open at rest decreases the voltage change resulting from a given receptor current, it more substantially increases the receptor current resulting from a given increase in [cAMP].  相似文献   

4.
Photoreceptor channel activation by nucleotide derivatives   总被引:5,自引:0,他引:5  
Cyclic nucleotide activated sodium currents were recorded from photoreceptor outer segment membrane patches. The concentration of cGMP and structurally similar nucleotide derivatives was varied at the cytoplasmic membrane face; currents were generated at each concentration by the application of a voltage ramp. Nucleotide-activated currents were analyzed as a function of both concentration and membrane potential. For cGMP, the average K0.5 at 0 mV was 24 microM, and the activation was cooperative with an average Hill coefficient of 2.3. Of the nucleotide derivatives examined, only 8-[[(fluorescein-5-yl-carbamoyl)methyl]thio]-cGMP (8-Fl-cGMP) activated the channel at lower concentrations than cGMP with a K0.5 of 0.85 microM. The next most active derivative was 2-amino-6-mercaptopurine riboside 3',5'-monophosphate (6-SH-cGMP) which had a K0.5 of 81 microM. cIMP and cAMP had very high K0.5 values of approximately 1.2 mM and greater than 1.5 mM, respectively. All nucleotides displayed cooperativity in their response and were rapidly reversible. Maximal current for each derivative was compared to the current produced at 200 microM cGMP; only 8-Fl-cGMP produced an identical current. The partial agonists 6-SH-cGMP, cIMP, and cAMP activated currents which were approximately 90%, 80%, and 25% of the cGMP response, respectively. 5'-GMP, 2-aminopurine riboside 3',5'-monophosphate, and 2'-deoxy-cGMP produced no detectable current. The K0.5 values for cGMP activation, examined from -90 to +90 mV, displayed a weak voltage dependence of approximately 400 mV/e-fold; the index of cooperativity was independent of the applied field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Ion channels directly activated by cyclic nucleotides are present in the plasma membrane of retinal rod outer segments. These channels can be modulated by several factors including internal pH (pH(i)). Native cyclic nucleotide-gated channels were studied in excised membrane patches from the outer segment of retinal rods of the salamander. Channels were activated by cGMP or cAMP and currents as a function of voltage and cyclic nucleotide concentrations were measured as pH(i) was varied between 7.6 and 5.0. Increasing internal proton concentrations reduced the current activated by cGMP without modifying the concentration (K(1/2)) of cGMP necessary for half-activation of the maximal current. This effect could be well described as a reduction of single-channel current by protonation of a single acidic residue with a pK(1) of 5.1. When channels were activated by cAMP a more complex phenomenon was observed. K(1/2) for cAMP decreased by increasing internal proton concentration whereas maximal currents activated by cAMP increased by lowering pH(i) from 7.6 to 5.7-5.5 and then decreased from pH(i) 5.5 to 5.0. This behavior was attributed both to a reduction in single-channel current as measured with cGMP and to an increase in channel open probability induced by the binding of three protons to sites with a pK(2) of 6.  相似文献   

6.
A novel, small conductance of Cl- channel was characterized by incorporation into planar bilayers from a plasma membrane preparation of lobster walking leg nerves. Under conditions of symmetrical 100 mM NaCl, 10 mM Tris-HCl, pH 7.4, single Cl- channels exhibit rectifying current-voltage (I-V) behavior with a conductance of 19.2 +/- 0.8 pS at positive voltages and 15.1 +/- 1.6 pS in the voltage range of -40 to 0 mV. The channel exhibits a negligible permeability for Na+ compared with Cl- and displays the following sequence of anion permeability relative to Cl- as measured under near bi-ionic conditions: I- (2.7) greater than NO3- (1.8) greater than Br- (1.5) greater than Cl- (1.0) greater than CH3CO2- (0.18) greater than HCO3- (0.10) greater than gluconate (0.06) greater than F- (0.05). The unitary conductance saturates with increasing Cl- concentration in a Michaelis-Menten fashion with a Km of 100 mM and gamma max = 33 pS at positive voltage. The I-V curve is similar in 10 mM Tris or 10 mM HEPES buffer, but substitution of 100 mM NaCl with 100 mM tetraethylammonium chloride on the cis side results in increased rectification with a 40% reduction in current at negative voltages. The gating of the channel is weakly voltage dependent with an open-state probability of 0.23 at -75 mV and 0.64 at +75 mV. Channel gating is sensitive to cis pH with an increased opening probability observed for a pH change of 7.4 to 11 and nearly complete inhibition for a pH change of 7.4 to 6.0. The lobster Cl- channel is reversibly blocked by the anion transport inhibitors, SITS (4-acetamido, 4'-isothiocyanostilbene-2,2'-disulfonic acid) and NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid). Many of these characteristics are similar to those previously described for small conductance Cl- channels in various vertebrate cells, including epithelia. These functional comparisons suggest that this invertebrate Cl- channel is an evolutionary prototype of a widely distributed class of small conductance anion channels.  相似文献   

7.
We have cloned a functional cDNA encoding the cyclic nucleotide-gated channel selectively expressed in catfish olfactory sensory neurons. The cyclic nucleotide-gated channels share sequence and structural features with the family of voltage-gated ion channels. This homology is most evident in transmembrane region S4, the putative voltage sensor domain, and the H5 domain, thought to form the channel pore. We have characterized the single-channel properties of the cloned catfish channel and compared these properties with the channel in native catfish olfactory sensory neurons. The channel is activated equally well by cAMP and cGMP, shows only a slight voltage dependence of gating, and exhibits a pH- and voltage-dependent subconductance state similar to that observed for the voltage-gated L-type calcium channel.  相似文献   

8.
The patch-clamp technique was applied to the antiluminal membrane of freshly isolated capillaries of rat brain (blood-brain barrier). With 1.3 mM Ca2+ in the bath, excision of membrane patches evoked ion channels, which could not be observed in cell-attached mode. The channel was about equally permeable to Na+ and K+ ions, but not measurable permeable to Cl- and the divalent ions Ca2+ and Ba2+. The current-voltage curve was linear in the investigated voltage range (-80 mV to +80 mV), and the single-channel conductance was 31 +/- 2 pS (n = 22). The channel open probability was not dependent on the applied potential. Lowering of Ca2+ to 1 microM or below on the cytosolic side inactivated the channels, whereas addition of cytosolic ATP (1 mM) inhibited channel activity completely and reversibly. The channel was blocked by the inhibitor of nonselective cation channels in rat exocrine pancreas 3',5-dichlorodiphenylamine-2-carboxylic acid (DCDPC, 10 microM) and by the antiinflammatory drugs flufenamic acid (greater than 10 microM) and tenidap (100 microM), as well as by gadolinium (10 microM). Thus, these nonselective cation channels have many properties in common with similar channels observed in fluid secreting epithelia. The channel could be involved in the transport of K+ ions from brain to blood side.  相似文献   

9.
Using the cell-attached configuration of the patch clamp technique, we have identified two different types of Ca channels in rat pancreatic beta-cell membranes. The two channels differ in single channel conductance, voltage dependence, and inactivation properties. The single-channel conductance, measured with 100 mM Ba2+ in the pipette, was 21.8 pS for the large channel and 6.4 pS for the small channel. The large-conductance channel is similar to the fast deactivating or L-type Ca channel described in other preparations. It is voltage dependent, has a threshold for activation around -30 mV, and can be activated from a holding potential of -40 mV. On the other hand, the small-conductance Ca channel is similar to the SD or T type Ca channel; it has a lower activation threshold, around -50 mV, and it can be inactivated by holding the membrane potential at -40 mV.  相似文献   

10.
Single-channel acetylcholine receptor kinetics.   总被引:3,自引:0,他引:3       下载免费PDF全文
The temporal relationships among junctional acetylcholine receptor single-channel currents have been examined to probe the mechanism of channel activation. We have presented an analytical approach, termed single-channel ensemble analysis, that allows one to estimate the kinetic transition rate constants for channel-opening and closing as well as the rate of leaving the specific doubly-liganded, closed state from which opening occurs. This approach may be applied to data produced by any number of independent channels as long as the probability of channel opening is low, a condition that is experimentally verifiable. The method has been independently validated using simulated single-channel data generated by computer from one or 100 hypothetical channels. Typical experimental values for the transition rate constants estimated from acetylcholine-activated single channels at the garter snake neuromuscular junction were: opening = 1,200 s-1, closing = 455 s-1, back rate for leaving the doubly-liganded, closed state = 3,200 s-1 at a transmembrane potential of -92 mV at room temperature. Each of these three rate constants was voltage dependent, with the closing rate decreasing e-fold for 173 mV of hyperpolarization, the opening rate increasing e-fold for 78 mV, and the unbinding rate increasing e-fold for 105 mV. The channel-closing rate was agonist dependent, being greater at all potentials for channels activated with carbamylcholine than for channels activated with acetylcholine. However, the single-channel conductance and reversal potential were the same for these two agonists.  相似文献   

11.
Fast inactivation causes rectification of the IKr channel   总被引:7,自引:0,他引:7       下载免费PDF全文
The mechanism of rectification of HERG, the human cardiac delayed rectifier K+ channel, was studied after heterologous expression in Xenopus oocytes. Currents were measured using two-microelectrode and macropatch voltage clamp techniques. The fully activated current- voltage (I-V) relationship for HERG inwardly rectified. Rectification was not altered by exposing the cytoplasmic side of a macropatch to a divalent-free solution, indicating this property was not caused by voltage-dependent block of outward current by Mg2+ or other soluble cytosolic molecules. The instantaneous I-V relationship for HERG was linear after removal of fast inactivation by a brief hyperpolarization. The time constants for the onset of and recovery from inactivation were a bell-shaped function of membrane potential. The time constants of inactivation varied from 1.8 ms at +50 mV to 16 ms at -20 mV; recovery from inactivation varied from 4.7 ms at -120 mV to 15 ms at -50 mV. Truncation of the NH2-terminal region of HERG shifted the voltage dependence of activation and inactivation by +20 to +30 mV. In addition, the rate of deactivation of the truncated channel was much faster than wild-type HERG. The mechanism of HERG rectification is voltage-gated fast inactivation. Inactivation of channels proceeds at a much faster rate than activation, such that no outward current is observed upon depolarization to very high membrane potentials. Fast inactivation of HERG and the resulting rectification are partly responsible for the prolonged plateau phase typical of ventricular action potentials.  相似文献   

12.
Rabbit skeletal muscle transverse tubule (T) membranes were fused with planar bilayers. Ca channel activity was studied with a "cellular" approach, using solutions that were closer to physiological than in previous studies, including asymmetric extracellular divalent ions as current carriers. The bilayer was kept polarized at -80 mV and depolarizing pulses were applied under voltage clamp. Upon depolarization the channels opened in a steeply voltage-dependent manner, and closed rapidly at the end of the pulses. The activity was characterized at the single-channel level and on macroscopic ensemble averages of test-minus-control records, using as controls the null sweeps. The open channel events had one predominant current corresponding to a conductance of 9 pS (100 mM Ba2+). The open time histogram was fitted with two exponentials, with time constants of 5.8 and 30 ms (23 degrees C). Both types of events were virtually absent at -80 mV. The average open probability (fractional open time) increased sigmoidally from 0 to a saturation level of 0.08, following a Boltzmann function centered at -25 mV and with a steepness factor of 7 mV. Ensemble averages of test-minus-control currents showed a sigmoidal activation followed by inactivation during the pulse and deactivation (closing) after the pulse. The ON time course was well fitted with "m3h" kinetics, with tau m = 120 ms and tau h = 1.2 s. Deactivation was exponential with tau = 8 ms. This study demonstrates a technique for obtaining Ca channel events in lipid bilayers that are strictly voltage dependent and exhibit most of the features of the macroscopic ICa. The technique provides a useful approach for further characterization of channel properties, as exemplified in the accompanying paper, that describes the consequences on channel properties of phosphorylation by cAMP dependent protein kinase.  相似文献   

13.
Two K(+)-selective channels in neonatal rat atrial cells activated by lipophilic compounds have been characterized in detail. The arachidonic acid-stimulated channel (IK.AA) had a slope conductance of 124 +/- 17 pS at +30 mV in symmetrical 140 mM potassium and a mean open time of approximately 1 ms, and was relatively voltage independent. IK.AA activity was reversibly increased by lowering pH to 6.0. Arachidonic acid was most effective in activating this channel, although a number of lipophilic compounds resulted in activation. Surprisingly, choline, a polar molecule, also activated the channel. A second K+ channel was activated by 10 microM phosphatidylcholine applied to the intracellular surface of inside-out atrial patches. This channel (IK.PC) had a slope conductance of 60 +/- 6 pS at +40 mV and a mean open time of approximately 0.6 ms, and was also relatively voltage independent. Fatty acids are probably monomeric in the membrane under the conditions of our recording; thus detergent effects are unlikely. Since a number of compounds including fatty acids and prostaglandins activated these two channels, an indirect, channel-specific mechanism may account for activation of these two cardiac K+ channels.  相似文献   

14.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

15.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

16.
Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMP or cGMP binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e. demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. We report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the alpha-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K(+) uptake system complements growth inhibition only when lipophilic cyclic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus laevis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K(+) currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca(2+) only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence (to our knowledge) identifying a plant member of this ion channel family.  相似文献   

17.
The cyclic nucleotide-gated (CNG) channel of retinal rod photoreceptor cells is an allosteric protein whose activation is coupled to a conformational change in the ligand-binding site. The bovine rod CNG channel can be activated by a number of different agonists, including cGMP, cIMP, and cAMP. These agonists span three orders of magnitude in their equilibrium constants for the allosteric transition. We recorded single-channel currents at saturating cyclic nucleotide concentrations from the bovine rod CNG channel expressed in Xenopus oocytes as homomultimers of alpha subunits. The median open probability was 0.93 for cGMP, 0.47 for cIMP, and 0.01 for cAMP. The channels opened to a single conductance level of 26-30 pS at +80 mV. Using signal processing methods based on hidden Markov models, we determined that two closed and one open states are required to explain the gating at saturating ligand concentrations. We determined the maximum likelihood rate constants for two gating schemes containing two closed (denoted C) and one open (denoted O) states. For the C left and right arrow C left and right arrow O scheme, all rate constants were dependent on cyclic nucleotide. For the C left and right arrow O left and right arrow C scheme, the rate constants for only one of the transitions were cyclic nucleotide dependent. The opening rate constant was fastest for cGMP, intermediate for cIMP, and slowest for cAMP, while the closing rate constant was fastest for cAMP, intermediate for cIMP, and slowest for cGMP. We propose that interactions between the purine ring of the cyclic nucleotide and the binding domain are partially formed at the time of the transition state for the allosteric transition and serve to reduce the transition state energy and stabilize the activated conformation of the channel. When 1 microM Ni2+ was applied in addition to cyclic nucleotide, the open time increased markedly, and the closed time decreased slightly. The interactions between H420 and Ni2+ occur primarily after the transition state for the allosteric transition.  相似文献   

18.
The effects ofcGMP and sodium nitroprusside (SNP) on odor responses in isolatedturtle olfactory neurons were examined. The inward current induced bydialysis of a mixture of 1 mM cAMP and 1 mM cGMP was similar to thatinduced by dialysis of 1 mM cAMP or 1 mM cGMP alone. After the neuronswere desensitized by the application of 1 mM cGMP, 3 mM8-(4-chlorophenylthio)-cAMP, a membrane-permeable cAMP analog, did notelicit any current, indicating that both cAMP and cGMP activated thesame channel. Extracellular application of SNP, a nitric oxide (NO)donor, evoked inward currents in a dose-dependent manner. However,application of SNP did not induce any currents after desensitization ofthe cGMP-induced currents, suggesting that SNP-induced currents aremediated via the cGMP-dependent pathway. Application of thecAMP-producing odorants to the neurons induced a large inward currenteven after neurons were desensitized to a high concentration of cGMP orSNP. These results suggest that the transduction pathway independent ofcAMP, cGMP, and NO also contributes to the generation of odor responsesin addition to the cAMP-dependent pathway.

  相似文献   

19.
The nicotinic acetylcholine (ACh) receptor is responsible for rapid conversion of chemical signals to electrical signals at the neuromuscular junction. Because the receptor and its ion channel are components of a single transmembrane protein, the time between ACh binding and channel opening can be minimized. To determine just how quickly the channel opens, we made rapid (100-400 microseconds) applications of 0.1-10 mM ACh to outside-out, multichannel membrane patches from BC3H-1 cells, while measuring the onset of current flow through the channels at 11 degrees C. Onset time is steeply dependent upon ACh concentration when channel activation is limited by binding of ACh (0.1-1 mM). At +50 mV, the 20-80% onset time reaches a plateau near 110 microseconds above 5 mM ACh as channel opening becomes rate limiting. Thus, we calculate the opening rate, beta = 12/ms, without reference to specific channel activation schemes. At -50 mV, the combination of a rapid, voltage-dependent block of channels by ACh with a finite solution exchange time distorts onset. To determine opening rate at -50 mV, we determine the kinetic parameters of block from "steady-state" current and noise analyses, assume a sequential model of channel activation/block, and numerically simulate current responses to rapid perfusion of ACh. Using this approach, we find beta = 15/ms. In contrast to the channel closing rate, the opening rate is relatively insensitive to voltage.  相似文献   

20.
C Mulle  D Choquet  H Korn  J P Changeux 《Neuron》1992,8(1):135-143
The Ca2+ permeability of a nicotinic acetylcholine receptor (nAChR) in the rat CNS was determined using both current and fluorescence measurements on medial habenula neurons. The elementary slope conductance of the nAChR channel was 11 pS in pure external Ca2+ (100 mM) and 42 pS in standard solution. Ca2+ influx through nAChRs resulted in the rise of cytosolic Ca2+ concentration ([Ca2+]i) to the micromolar range. This increase was maximal under voltage conditions (below -50 mV) in which Ca2+ influx through voltage-activated channels was minimal. Ca2+ influx through nAChRs directly activated a Ca(2+)-dependent Cl- conductance. In addition, it caused a decrease in the GABAA response that outlasted the rise in [Ca2+]i. These results underscore the physiological significance of Ca2+ influx through nAChR channel in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号