首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 151 毫秒
1.
Recent advances in organ printing technology for applications relating to medical interventions and organ replacement are described. Organ printing refers to the placement of various cell types into a soft scaffold fabricated according to a computer-aided design template using a single device. Computer aided scaffold topology design has recently gained attention as a viable option to achieve function and mass transport requirements within tissue engineering scaffolds. An exciting advance pioneered in our laboratory is that of simultaneous printing of cells and biomaterials, which allows precise placement of cells and proteins within 3-D hydrogel structures. This advance raises the possibility of spatially controlling not only the scaffold structure, but also the type of tissue that can be grown within the scaffold and the thickness of the tissue as capillaries and vessels could be constructed within the scaffolds. Here we summarize recent advances in printing cells and materials using the same device.  相似文献   

2.
Organ printing, or the layer by layer additive robotic biofabrication of functional three-dimensional tissue and organ constructs using self-assembling tissue spheroid building blocks, is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. It is increasingly obvious that similar well-established industries implement automated robotic systems on the path to commercial translation and economic success. The use of robotic bioprinters alone however is not sufficient for the development of large industrial scale organ biofabrication. The design and development of a fully integrated organ biofabrication line is imperative for the commercial translation of organ printing technology. This paper presents recent progress and challenges in the development of the essential components of an organ biofabrication line.  相似文献   

3.
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.  相似文献   

4.
The fabrication of 3D tissues retaining the original functions of tissues/organs in vitro is crucial for optimal tissue engineering and regenerative medicine. The fabrication of 3D tissues also contributes to the establishment of in vitro tissue/organ models for drug screening. Our laboratory has developed a fabrication system for functional 3D tissues by stacking cell sheets of confluent cultured cells detached from a temperature-responsive culture dish. Here we describe the protocols for the fabrication of 3D tissues by cell sheet engineering. Three-dimensional cardiac tissues fabricated by stacking cardiac cell sheets pulsate spontaneously, synchronously and macroscopically. Via this protocol, it is also possible to fabricate other tissues, such as 3D tissue including capillary-like prevascular networks, from endothelial cells sandwiched between layered cell sheets. Cell sheet stacking technology promises to provide in vitro tissue/organ models and more effective therapies for curing tissue/organ failures.  相似文献   

5.
Wang D  Cheng D  Guan Y  Zhang Y 《Biomacromolecules》2011,12(3):578-584
Organ printing is an alternative to the classic scaffold-based tissue engineering approach in which functional living macrotissues and organ constructs are fabricated by assembly of the building blocks: microtissue spheroids. However, the method for scalable fabrication of cell spheroids does not exist yet. We propose here that it may be a suitable one to generate cell spheroids in thermoreversible hydrogel scaffold, followed by liquefying the scaffold and releasing the generated spheroids. We show that concentrated poly(N-isopropylacrylamide-co-acrylic acid) microgel dispersions solidify upon heating and liquefy upon cooling. A hysteresis in the cooling process was observed and explained by the slow kinetics of the dissolution of the aggregated polymer chains in the cooling process due to additional intra- and interchain interactions. Hep G2 cells are seeded by simple mixing the cells with the microgel dispersions at room temperature. Cell/scaffold constructs form in situ when heated to 37 °C. The cells proliferate and form multicellular spheroids. When brought back to room temperature, the hydrogel scaffolds liquefy, thus, releasing the generated cell spheroids. The released spheroids can attach on the cell culture plate, disassemble, and spread on the substrate, confirming the cell viability. The whole process is carried out under mild conditions and does not involve any toxic additives, which may introduce injury to the cells or DNA. It is scalable and may meet the need for large scale fabrication of cell spheroids for organ printing.  相似文献   

6.
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.  相似文献   

7.
The capability to print three‐dimensional (3D) cellular tubes is not only a logical first step towards successful organ printing but also a critical indicator of the feasibility of the envisioned organ printing technology. A platform‐assisted 3D inkjet bioprinting system has been proposed to fabricate 3D complex constructs such as zigzag tubes. Fibroblast (3T3 cell)‐based tubes with an overhang structure have been successfully fabricated using the proposed bioprinting system. The post‐printing 3T3 cell viability of printed cellular tubes has been found above 82% (or 93% with the control effect considered) even after a 72‐h incubation period using the identified printing conditions for good droplet formation, indicating the promising application of the proposed bioprinting system. Particularly, it is proved that the tubular overhang structure can be scaffold‐free fabricated using inkjetting, and the maximum achievable height depends on the inclination angle of the overhang structure. As a proof‐of‐concept study, the resulting fabrication knowledge helps print tissue‐engineered blood vessels with complex geometry. Biotechnol. Bioeng. 2012; 109: 3152–3160. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
In engineered bone grafts, the combined actions of bone-forming cells, matrix and bioactive stimuli determine the eventual performance of the implant. The current notion is that well-built 3D constructs include the biological elements that recapitulate native bone tissue structure to achieve bone formation once implanted. The relatively new technology of organ/tissue printing now enables the accurate 3D organization of the components that are important for bone formation and also addresses issues, such as graft porosity and vascularization. Bone printing is seen as a great promise, because it combines rapid prototyping technology to produce a scaffold of the desired shape and internal structure with incorporation of multiple living cell types that can form the bone tissue once implanted.  相似文献   

9.
Statistics from the NHS Blood and Transplant Annual Review show that total organ transplants have increased to 4213 in 2012, while the number of people waiting to receive an organ rose to 7613 that same year. Human donors as the origin of transplanted organs no longer meet the ever-increasing demand, and so interest has shifted to synthetic organ genesis as a form of supply. This focus has given rise to new generation tissue and organ engineering, in the hope of one day designing 3D organs in vitro. While research in this field has been conducted for several decades, leading to the first synthetic trachea transplant in 2011, scaffold design for optimising complex tissue growth is still underexplored and underdeveloped. This is mostly the result of the complexity required in scaffolds, as they need to mimic the cells’ native extracellular matrix. This is an intricate nanostructured environment that provides cells with physical and chemical stimuli for optimum cell attachment, proliferation and differentiation. Carbon nanotubes are a popular addition to synthetic scaffolds and have already begun to revolutionise regenerative medicine. Discovered in 1991, these are traditionally used in various areas of engineering and technology; however, due to their excellent mechanical, chemical and electrical properties their potential is now being explored in areas of drug delivery, in vivo biosensor application and tissue engineering. The incorporation of CNTs into polymer scaffolds displays a variety of structural and chemical enhancements, some of which include: increased scaffold strength and flexibility, improved biocompatibility, reduction in cancerous cell division, induction of angiogenesis, reduced thrombosis, and manipulation of gene expression in developing cells. Moreover CNTs’ tensile properties open doors for dynamic scaffold design, while their thermal and electrical properties provide opportunities for the development of neural, bone and cardiac tissue constructs.  相似文献   

10.
细胞打印技术是一种在体外构造具有生物活性的三维多细胞体系的先进技术。近年来,有关细胞打印技术的研究引起广泛的关注,其原因在于该领域具有明显的学科交叉与渗透融合的特点,它处于生命科学与快速成型技术、生物制造技术、生物科学和材料科学的交汇点。更加值得关注的是它为组织工程学突破二维研究的局限性,在三维尺度上精确控制与人体组织或器官相似的三维构造体方面的研究提供了一种新的思路。基于这一技术不仅在三维组织工程,还对细胞生物学、高通量药物筛选及细胞传感器等方面的前沿问题均有广阔的研究应用前景,介绍了近年来开发用于细胞打印的技术及其潜在的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号