首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
J D Bahk  H Sakai  T Komano 《Gene》1988,65(1):93-99
Using the plaque assay system for screening the single-strand (ss) initiation determinant (ssi) sequences, we have found that 119-bp region in pACYC184, a derivative of the plasmid P15A of Escherichia coli, can direct such ss DNA initiation. This region is located downstream from the P15A origin of replication and conserves consensus sequences of the ssi signals found in the other plasmids. Signals for ss DNA initiation are defined as nucleotide sequences present on ss DNA templates and required for priming DNA synthesis. The direction of chain elongation in DNA synthesis is opposite to that of the leading strand. In this region, we found a potential stem-and-loop structure. The 119-bp DNA segment of plasmid pACYC184 cloned in f1R199 filamentous phage could direct rifampicin-resistant conversion of the ss DNA to the double-stranded replicative form.  相似文献   

2.
M Sollazzo  R Frank  G Cesareni 《Gene》1985,37(1-3):199-206
We show that the fusion between regulatory sequences present on expression vectors and coding sequences can be efficiently achieved by oligonucleotide-directed mutagenesis. We have constructed single-stranded (ss) expression vectors that facilitate this process. These plasmids derive from vectors that have been used for the synthesis of quantities of proteins in Escherichia coli or RNAs in vitro. By inserting the origin of replication of the ss phage f1 into these plasmids it became possible to package their ss DNA into phage rods. Deletion of unwanted sequences or simple base changes can then be obtained by oligonucleotide-directed mutagenesis using the vector ss DNA as a template. We discuss the results of several experiments where this technique was applied to our expression vectors and we demonstrate the construction of a plasmid which efficiently synthesizes in vitro a regulatory RNA molecule that is involved in the control of plasmid copy number.  相似文献   

3.
Analysis of chromosomal integration and deletions of yeast plasmids.   总被引:58,自引:7,他引:51       下载免费PDF全文
Plasmid DNAs from six strains of Saccharomyces cerevisiae were compared. Three different plasmids were found, designated Scp 1, Scp 2 and Scp 3, with monomer lengths of 6.19, 6.06 and 5.97 kilobases as referenced to sequenced phiX174 DNA. DNA from each of the plasmids was inserted into a lambda vector DNA. Hybrid phage containing inserted DNA of the desired size were enriched by genetic selection and their DNAs analysed by rapid techniques. All three plasmids share the same organization, two unique sequences separated by two inverted repeats, and share basically the same DNA sequences. Scp 2 and Scp 3 differ from Scp 1 by missing a unique HpaI site and by having small overlapping deletions in the same region. The HpaI site in Scp 1 is, therefore, in a nonessential region and suitable for insertion of foreign DNA in the potential use of the yeast plasmid as a vector. Hybridization of labelled cloned plasmid DNA to restriction fragments of linear yeast DNA separated on agarose gels showed that the plasmid DNA was not stably integrated into the yeast chromosomal DNA.  相似文献   

4.
Two different DNA sequences from the yeast Candida maltosa confer the ability to replicate autonomously to the yeast integrative vector pLD700 on which they are cloned. The recombinant plasmids pLD701 and pLD702 with autonomously replicating sequences (ARS) from Candida maltosa and LEU2 gene from Saccharomyces cerevisiae transform the auxotrophic strain S. cerevisiae DC5 with the efficiency 3-5 x 10(3) per microgram of DNA. Like other yeast vectors harbouring ARS, these plasmids are not stable in yeast cells. Restriction and hybridization analyses have revealed the pLD701 plasmid to contain ARS from chromosomal DNA of C. maltosa. Plasmid pLD701 appears to be a useful vector for yeast transformation.  相似文献   

5.
A 1.5-kilobase-pair SalI-HindIII (SH) restriction fragment from the region of Saccharomyces cerevisiae chromosome XIV immediately adjacent to the centromere appears to contain sequences that act as a hot spot for mitotic recombination. The presence of SH DNA on an autonomously replicating plasmid stimulates homologous genetic exchange between yeast genomic sequences and those present on the plasmid. In all recombinants characterized, exchange occurs in plasmid yeast sequences adjacent to rather than within the SH DNA. Hybridization analyses reveal that SH-containing plasmids are present in linear as well as circular form in S. cerevisiae and that linear forms are generated by cleavage at specific sites. Presumably, it is the linear form of the plasmid that is responsible for the stimulation of genetic exchange. Based on these observations, it is proposed that this DNA fragment contains a centromere-linked recombination hot spot and that SH-stimulated recombination occurs via a mechanism similar to double-strand-gap repair (J. W. Szostak, T. Orr-Weaver, J. Rothstein, and F. Stahl, Cell 33:25-35 1983).  相似文献   

6.
Fragments of chromosomal DNA from a variety of eucaryotes can act as ARSs (autonomously replicating sequence) in yeasts. ARSs enable plasmids to be maintained in extrachromosomal form, presumably because they function as initiation sites for DNA replication. We isolated eight different sequences from mouse chromosomal DNA which function as ARSs in Saccharomyces cerevisiae (bakers' yeast). Although the replication efficiency of the different mouse ARSs in yeasts appears to vary widely, about one-half of them functions as well as the yeast chromosomal sequence ARS1. Moreover, five of the ARSs also promote self replication of plasmids in Schizosaccharomyces pombe (fission yeast). Each of the ARSs was cloned into plasmids suitable for transformation of mouse tissue culture cells. Plasmids were introduced into thymidine kinase (TK)-deficient mouse L cells by the calcium phosphate precipitation technique in the absence of carrier DNA. In some experiments, the ARS plasmid contained the herpes simplex virus type 1 TK gene; in other experiments (cotransformations), the TK gene was carried on a separate plasmid used in the same transformation. In contrast to their behavior in yeasts, none of the ARS plasmids displayed a significant increase in transformation frequency in mouse cells compared with control plasmids. Moreover, only 1 of over 100 cell lines contained the original plasmid in extrachromosomal form. The majority of cell lines produced by transformation with an ARS TK plasmid contained multiple copies of plasmid integrated into chromosomal DNA. In most cases, results with plasmids used in cotransformations were similar to those for plasmids carrying TK. However, cell lines produced by cotransformations with plasmids containing any one of three of the ARSs (m24, m25, or m26) often contained extrachromosomal DNAs.  相似文献   

7.
Interaction between phosphatidylserine vesicles and rat brain synaptosomes   总被引:5,自引:0,他引:5  
Five different DNA sequences of Phanerochaete chrysosporium capable of supporting autonomous replication of yeast integration plasmid (YIp5) in Saccharomyces cerevisiae were isolated. These hybrid plasmids with the autonomous replication sequences from P. chrysosporium are maintained extra-chromosomally, are mitotically unstable and transform Ura3 deletion mutant of S. cerevisiae to Ura+ phenotype with high frequency. The autonomous replication sequence in pRR2, one of the recombinant plasmids, was further characterized and was shown to be homologous to P. chrysosporium genomic DNA. Restriction analyses showed that this plasmid has unique PvuII and SalI restriction sites for cloning.  相似文献   

8.
The origin of replication of the isometric single-stranded DNA bacteriophages is located in a specific sequence of 30 nucleotides, the origin region, which is highly conserved in these phage genomes. Plasmids harboring this origin region are subject to rolling-circle DNA replication and packaging of single-stranded (ss) plasmid DNA into phage coats in phi X174 or G4-phage-infected cells. This system was used to study the nucleotide sequence requirements for rolling-circle DNA replication and DNA packaging employing plasmids which contain the first 24, 25, 26, 27, 28 and the complete 30-base-pair (bp) origin region of phi X174. No difference in plasmid ss DNA packaging was observed for plasmids carrying only the 30-bp origin region and plasmids carrying the 30-bp origin region plus surrounding sequences (i.e. plasmids carrying the HaeIII restriction fragment Z6B of phi X174 replicative-form DNA). This indicates that all signals for DNA replication and phage morphogenesis are contained in the 30-bp origin region and that no contribution is made by sequences which immediately surround the origin region in the phi X174 genome. The efficiency of packaging of plasmid ssDNA for plasmids containing deletions in the right part of the origin region decreases drastically when compared with the plasmid containing the complete 30-bp origin region (for a plasmid carrying the first 28 bp of the origin region to approximately 5% and 0.5% in the phi X174 and G4 systems respectively). Previous studies [Fluit, A.C., Baas, P.D., van Boom, J.H., Veeneman, G.H. and Jansz, H.S. (1984) Nucleic Acids Res. 12, 6443--6454] have shown that the presence of the first 27 bp of the origin region is necessary as well as sufficient for cleavage of the viral strand in the origin region by phi X174 gene A protein. Moreover, Brown et al. [Brown, D.R., Schmidt-Glenewinkel, T., Reinberg, D. and Hurwitz, J. (1983) J. Biol. Chem. 258, 8402--8412] have shown that omission of the last 2 bp of the origin region does not interfere with phi X174 rolling-circle DNA replication in vitro. Our results therefore suggest that for optimal phage development in vivo, signals in the origin region are utilized which have not yet been noticed by the in vitro systems for phi X174 phage DNA replication and morphogenesis.  相似文献   

9.
We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.  相似文献   

10.
R J Zagursky  M L Berman 《Gene》1984,27(2):183-191
We have constructed chimeric plasmid vectors with the origin and intergenic region from M13 phage cloned into the PvuII ( pZ145 ) and AhaIII ( pZ150 , pZ152 ) sites of pBR322. In the absence of M13 phage, these plasmids replicate like any other ColE1-derived plasmid and confer both ampicillin and tetracycline resistance (Amp, Tet). Upon infection with M13 phage, the viral origin present on the plasmids permits phage-directed plasmid replication and results in high yields of single-stranded (ss) plasmid DNA in M13-like particles. This ssDNA, which represents only one of the plasmid strands, is useful as a substrate for rapid DNA sequence determination by the dideoxy sequencing method described by Sanger et al. (1977). Since these plasmids contain an intact pBR322, the intergenic region can be transferred onto most pBR322 derivatives to yield ss plasmid DNA without affecting the recipient plasmid for further studies. We also constructed a deletion derivative of pZ145 , plasmid pZ146 , that does not exhibit interference with the growth of the M13 helper, although this plasmid is encapsidated into phage particles. This result confirms the theory that the intergenic region consists of two domains: one domain being a segment involved in phage morphogenesis and the other being a region of functional origin which interferes with M13 replication.  相似文献   

11.
D L Mielke  M Russel 《Gene》1992,118(1):93-95
The TnphoA transposon constructed by Manoil and Beckwith [Proc. Natl. Acad. Sci. USA 82 (1985) 8129-8133] has been modified to permit easy isolation of single-stranded (ss) DNA of target plasmids. The intergenic region (IG) of filamentous phage f1, which consists of the phage origin of replication and packaging signal, was inserted into a nonessential region of TnphoA. This modified transposon should be useful for the analysis of genes cloned in plasmids that lack a filamentous phage IG. Transposition of TnphoA-IG into a plasmid carries the IG with it; subsequently, after infection with a filamentous helper phage, ss plasmid DNA suitable for sequence analysis and useful for oligodeoxyribonucleotide-mediated mutagenesis of TnphoA-generated fusions can be isolated. The utility of TnphoA-IG was confirmed by analysis of 'blue hops' into the bla (encoding beta-lactamase) and pspE (encoding phage shock protein) genes whose products are secreted into the Escherichia coli periplasm.  相似文献   

12.
We studied illegitimate recombination by transforming yeast with a single-stranded (ss) non-replicative plasmid. Plasmid pCW12, containing the ARG4gene, was used for transformation of yeast strains deleted for the ARG4, either in native (circular) form or after linearization within the vector sequence by the restriction enzyme ScaI. Both circular and linearized ss plasmids were shown to be much more efficient in illegitimate integration than their double-stranded (ds) counterparts and more than two-thirds of the transformants analysed contained multiple tandem integrations of the plasmid. Pulsed-field gel electrophoresis of genomic DNA revealed significant changes in the karyotype of some transformants. Plasmid DNA was frequently detected on more than one chromosome and on mitotically unstable, autonomously replicating elements. Our results show that the introduction of nonhomologous ss DNA into yeast cells can lead to different types of alterations in the yeast genome.  相似文献   

13.
A family of yeast expression vectors containing the phage f1 intergenic region   总被引:71,自引:0,他引:71  
T Vernet  D Dignard  D Y Thomas 《Gene》1987,52(2-3):225-233
The construction and characterization of a family of yeast expression vectors is described. They have the following features: plasmid replication and selection (ApR) in Escherichia coli, packaging of single-stranded (ss) DNA upon infection of E. coli with a filamentous helper phage, replication in Saccharomyces cerevisiae based on the 2 mu plasmid origin of replication (ori), selection in yeast by complementation of LEU2 (pVT-L series, size 6.3 kb) or URA3 gene (pVT-U series, size 6.9 kb) and seven unique restriction sites for cloning within an 'expression cassette' which includes the promoter and 3' sequence of the ADH1 gene. The multiple cloning site as well as the ori and intergenic region of the phage f1 have been cloned in two orientations for convenient gene cloning and ssDNA strand selection. As a result any of these eight vectors can be chosen for cloning, expressing genes in yeast, sequencing and mutagenesis without the need for recloning into specialized vectors.  相似文献   

14.
Transformation studies with Saccharomyces cerevisiae (bakers' yeast) have identified DNA sequences which permit extrachromosomal maintenance of recombinant DNA plasmids in transformed cells. It has been hypothesized that such sequences (called ARS for autonomously replicating sequence) serve as initiation sites for DNA replication in recombinant DNA plasmids and that they represent the normal sites for initiation of replication in yeast chromosomal DNA. We have constructed a novel plasmid called TRP1 R1 Circle which consists solely of 1,453 base pairs of yeast chromosomal DNA. TRP1 RI Circle contains both the TRP1 gene and a sequence called ARS1. This plasmid is found in 100 to 200 copies per cell and is relatively stable during both mitotic and meiotic cell cycles. Replication of TRP1 RI Circle requires the products of the same genes (CDC28, CDC4, CDC7, and CDC8) required for replication of chromosomaL DNA. Like chromosomal DNA, its replication does not occur in cells arrested in the B1 phase of the cell cycle by incubation with the yeast pheromone alpha-factor. In addition, TRP1 RI Circle DNA is organized into nucleosomes whose size and spacing are indistinguishable from that of bulk yeast chromatin. These results indicate that TRP1 RI Circle has the replicative and structural properties expected for an origin of replication from yeast chromosomal DNA. Thus, this plasmid is a suitable model for further studies of yeast DNA replication in both cells and cell-free extracts.  相似文献   

15.
B J Schmidt  J Strasser  C W Saunders 《Gene》1986,41(2-3):331-335
A Bacillus subtilis/Escherichia coli shuttle vector was modified to contain the origin of DNA replication of the E. coli filamentous phage f1, in both orientations. Upon superinfection with and f1-related phage of an E. coli strain containing either of the modified vectors, the single-stranded (ss) form of the plasmid was packaged in virions and released to the culture medium. Each of these ss DNAs has been purified from the virions and used as a template for oligodeoxynucleotide-directed mutagenesis. The resulting mutations were demonstrated by DNA sequencing. The capacity of these vectors to be isolated as phage ss DNA from E. coli and to replicate as plasmids in B. subtilis makes them convenient substrates for the production of oligodeoxynucleotide-directed mutations for studies in B. subtilis.  相似文献   

16.
 We studied illegitimate recombination by transforming yeast with a single-stranded (ss) non-replicative plasmid. Plasmid pCW12, containing the ARG4gene, was used for transformation of yeast strains deleted for the ARG4, either in native (circular) form or after linearization within the vector sequence by the restriction enzyme ScaI. Both circular and linearized ss plasmids were shown to be much more efficient in illegitimate integration than their double-stranded (ds) counterparts and more than two-thirds of the transformants analysed contained multiple tandem integrations of the plasmid. Pulsed-field gel electrophoresis of genomic DNA revealed significant changes in the karyotype of some transformants. Plasmid DNA was frequently detected on more than one chromosome and on mitotically unstable, autonomously replicating elements. Our results show that the introduction of nonhomologous ss DNA into yeast cells can lead to different types of alterations in the yeast genome. Received: 9 February 1996/Accepted: 7 July 1996  相似文献   

17.
Copy number control by a yeast centromere   总被引:30,自引:0,他引:30  
G Tschumper  J Carbon 《Gene》1983,23(2):221-232
Plasmids containing a cloned yeast (Saccharomyces cerevisiae) centromere (CEN3) in combination with a suitable DNA replication system are maintained in yeast at the low copy number typical of a chromosome. In composite plasmids containing CEN3 plus the yeast 2 mu plasmid, the CEN3 copy number control is dominant over the amplification system that normally drives the 2 mu plasmids to high copy number. The CEN3-2 mu composite plasmids are relatively stably maintained in yeast at a copy number of about one per haploid genome, and segregate through meiosis in a typical Mendelian pattern. Some of the CEN3-2 mu composite plasmids isolated from yeast contain deletions of variable size that remove the functional centromere, resulting in loss of the CEN3 control and reversion to high copy number. Formation of the CEN3 deletions requires the specialized recombination system (inverted repeat sequences and FLP gene) of the yeast 2 mu plasmid.  相似文献   

18.
R Koren  J LeVitre  K A Bostian 《Gene》1986,41(2-3):271-280
  相似文献   

19.
A Toh-e  S Tada    Y Oshima 《Journal of bacteriology》1982,151(3):1380-1390
DNA plasmids were detected in two independent strains of Saccharomyces rouxii among 100 yeast strains other than Saccharomyces cerevisiae tested. The plasmids, pSR1 and pSR2, had almost the same mass (approximately 4 X 10(6) daltons) as 2-micrometers DNA of S. cerevisiae. pSR1 and pSR2 gave identical restriction maps with restriction endonucleases BamHI, EcoRI, HincII, HindIII, and XhoI, and both lacked restriction sites for PstI, SalI, and SmaI. These maps, however, differed significantly from that of S. cerevisiae 2-micrometers DNA. Restriction analysis also revealed two isomeric forms of each plasmid and suggested the presence of a pair of inverted repeat sequences in the molecules where intramolecular recombination took place. DNA-DNA hybridization between the pSR1 and pSR2 DNAs indicated significant homology between their base sequences, whereas no homology was detected between pSR1 and pJDB219, a chimeric plasmid constructed from a whole molecule of 2-micrometers DNA, plasmid pMB9, and a 1.2-kilobase DNA fragment of S. cerevisiae bearing the LEU2 gene. A chimeric plasmid constructed with pSR1 and YIp1, the larger EcoRI-SalI fragment of pBR322 ligated with a 6.1-kilobase DNA fragment of S. cerevisiae bearing the HIS3 gene, could replicate autonomously in an S. cerevisiae host and produced isomers, presumably by intramolecular recombination at the inverted repeats.  相似文献   

20.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号