首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
The neural organization of the olfactory system in the desert iguana, Dipsosaurus dorsalis, has been investigated by using the Fink-Heimer technique to trace the efferents of the main and accessory olfactory bulbs, and Golgi preparations to determine the spatial relations between olfactory afferents and neurons in the primary olfactory centers. The accessory olfactory bulb projects to the ipsilateral nucleus sphericus via the accessory olfactory tract. The main olfactory bulb projects to the ipsilateral telen-cephalon via four tracts. The medial olfactory tract projects to the rostral continuation of medial cortex and to the septum. The intermediate olfactory tract projects to the olfactory tubercle and retrobulbar formation. The lateral olfactory tract projects to the rostral part of lateral cortex. The intermediate and lateral olfactory tracts also merge caudally to form the stria medullaris, which crosses the midline in the habenular commissure and distributes fibers to the contralateral hemisphere via two tracts. The lateral corticohabenular tract terminates in the contralateral lateral cortex. The anterior olfactohabenular tract terminates in the contralateral olfactory tubercle, retrobulbar formation and septum. The relation of olfactory afferents to neurons in the medial cortex, lateral cortex, nucleus sphericus, and septum corresponds to a pattern of organization that is typical of many olfactorecipient structures. Such structures are trilaminar, with neurons whose somata are situated in the intermediate layer (layer 2) sending spine-laden dendrites into an outer, molecular layer (layer 1). Olfactory afferents intersect the distal segments of these dendrites. By contrast, other olfactorecipient structures in Dipsoaurus deviate from the familiar pattern. Olfactory afferents intersect somata lying in layer 2 of the retrobulbar formation. Olfactory afferents include some fibers which course perpendicularly to the surface of the olfactory tubercle and extend deep to layer 2.  相似文献   

2.
The anterior part of the embryonic telencephalon gives rise to several brain regions that are important for animal behavior, including the frontal cortex (FC) and the olfactory bulb. The FC plays an important role in decision‐making behaviors, such as social and cognitive behavior, and the olfactory bulb is involved in olfaction. Here, we show the organizing activity of fibroblast growth factor 8 (Fgf8) in the regionalization of the anterior telencephalon, specifically the FC and the olfactory bulb. Misexpression of Fgf8 in the most anterior part of the mouse telencephalon at embryonic day 11.5 (E11.5) by ex utero electroporation resulted in a lateral shift of dorsal FC subdivision markers and a lateral expansion of the dorsomedial part of the FC, the future anterior cingulate and prelimbic cortex. Fgf8‐transfected brains had lacked ventral FC, including the future orbital cortex, which was replaced by the expanded olfactory bulb. The olfactory region occupied a larger area of the FC when transfection efficiency of Fgf8 was higher. These results suggest that Fgf8 regulates the proportions of the FC and olfactory bulb in the anterior telencephalon and has a medializing effect on the formation of FC subdivisions.  相似文献   

3.
The association and commissural connections between the four cortical areas in water (Natrix sipedon) and garter (Thamnophis sirtalis) snakes were studied by placing lesions on the cortical surface and studying the resulting degeneration in Fink-Heimer preparations. Lateral cortex projects to the outer one third of layer 1 of ipsilateral medial cortex. Dorsal cortex projects to the middle third of layer 1 of ipsilateral medial cortex. Dorsomedial cortex projects bilaterally to the inner third of layer 1 and to layer 3 of me dial cortex. It also projects to layer 1 of contralateral dorsomedial cortex. Medial cortex projects ipsilaterally to each of the other cortical areas. With the apparent exception of the projection of medial cortex to lateral cortex, each projection is organized such that each rostrocaudal segment of a cortical area projects to all segments of the target area lying at the same or more caudal levels.  相似文献   

4.
Kang N  Baum MJ  Cherry JA 《Chemical senses》2011,36(3):251-260
A whole-mount, flattened cortex preparation was developed to compare profiles of axonal projections from main olfactory bulb (MOB) and accessory olfactory bulb (AOB) mitral and tufted (M/T) cells. After injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin, mapping of labeled axons using a Neurolucida system showed that M/T cells in the AOB sent axons primarily to the medial and posterior lateral cortical amygdala, with minimal branching into the piriform cortex. By contrast, M/T cells in the MOB displayed a network of collaterals that branched off the primary axon at several levels of the lateral olfactory tract (LOT). Collaterals emerging from the LOT into the anterior piriform cortex were often observed crossing into the posterior piriform cortex. M/T cells in the dorsal MOB extended fewer collaterals from the primary axon in the rostral LOT than did M/T cells from the anterior or ventral MOB. MOB M/T cells that projected to the medial amygdala did not do so exclusively, also sending collaterals to the anterior cortical amygdala as well as to olfactory cortical regions. This arrangement may be related to the ability of social experience to modify the response of mice to volatile pheromones detected by the main olfactory system.  相似文献   

5.
The striatum of the lizard Tupinambis nigropunctatus lies in the lateral wall of the telencephalon and consists of two major subdivisions: the dorsal striatum and the ventral striatum. Electrolytic lesions were placed in all parts of the striatal complex and in adjacent areas and the subsequent anterograde degeneration was studied using the Nauta-Gygax and Fink-Heimer techniques. Lesions in the dorsal striatum cause terminal degeneration in the ventral striatum both ipsi- and contralaterally. In addition, projections have been found to the lateral amygdaloid nucleus and to parts of the dorsal striatum not affected by the lesion. Following lesions in the ventral striatum fiber degeneration could always be observed in the ventral peduncle of the lateral forebrain bundle. Corresponding terminal degeneration was found in the anterior and posterior entopeduncular nuclei, the tegmentum mesencephali, the substantia nigra, the prerubral area, the mesencephalic central grey and the lateral cerebellar nucleus. When the large celled part of the ventral striatum was involved in the lesion additional degeneration could be traced to the nucleus rotundus via the dorsal peduncle of the lateral forebrain bundle.  相似文献   

6.
Serial and interval electron micrograph series were used to examine the rostral and anterodorsal nerves of 12.5‐day‐old amphioxus larvae and trace selected fibres to their targets in the nerve cord. The nerves contain a variety of fibre types, including axons from at least two types of epithelial sensory cells and neurites derived from dorsal (Retzius) bipolar cells located within the cord. The rostral epithelial cells form basal synapses with a population of peripheral neurites that probably derive from the dorsal bipolar cells, though other sources are possible. Varicosities containing dense‐core vesicles occur at the tip of the rostrum, indicating the presence of efferent innervation at this site. Within the cord, some peripherally derived rostral afferents terminate at the level of the anterior cerebral vesicle, others synapse directly with both motoneurones and the notochord, but those in the largest bundle target the dendrites of the large paired neurones (LPNs) located in the primary motor centre. LPN dendrites also receive synapses from sensory fibres arriving via the anterodorsal nerves, from the anterior‐most of the dorsal bipolar cells, referred to here as tectal cells, and from a single fibre derived from the frontal eye. This convergence of multiple inputs accords with other evidence that the LPNs are key intermediaries in the sensorimotor pathway that activates the larval escape response. The rostral nerves are much larger at metamorphosis, but the ventral tracts that derive from them are still comparatively small. This is because the majority of rostral fibres are diverted into a late‐developing dorsal tract that travels within the cord to the front end of the dorsolateral neuropile, where most of its fibres disperse and form synapses. The positioning of the dorsal and ventral tracts strongly suggests homology with vertebrate olfactory and terminal nerves, respectively. This, and the question of whether the amphioxus central nervous system has anything comparable to the olfactory bulb, a telencephalic structure, is discussed.  相似文献   

7.
The efferent connections of the olfactory bulb and accessory olfactory bulb of two species of garter snakes, Thamnophis sirtalis and T. radix were studied with experimental anterograde degeneration techniques. Axons of cells located in the olfactory bulb terminate ipsilaterally in all parts of the anterior olfactory nucleus, olfactory tubercle and lateral pallium. In addition, some axons enter the ipsilateral stria medullaris thalami, cross the midline in the habenular commissure, enter the contralateral stria medullaris thalami and terminate in the contralateral lateral pallium. The axons of cells in the accessory olfactory bulb course through the telencephalon completely separated from the fibers of olfactory bulb origin and terminate predominantly in the nucleus sphericus. These results confirm previous reports of the separation between the central projections of the olfactory and vomeronasal systems in a variety of vertebrates. The totality of the separation between these two systems coupled with the extensive development of the vomeronasal-accessory bulb system in these snakes suggests that they may be ideal subjects for further research on the functional significance of the vomeronasal system.  相似文献   

8.
The intrinsic organization of medial cortex in snakes, primarily of the genera Natrix and Boa, was studied using Golgi and electron microscopic techniques. The area has three distinct layers, each containing a characteristic population of neurons. Stellate cells comprise a relatively small population of neurons with their somata and dendrites restricted to layer 1, the most superficial layer. Their axons course horizontally in layer 1. Candelabra cells form the largest population of neurons in medial cortex. Their somata lie densely packed in layer 2 and are joined by specialized junctions. Ascending dendrites extend from the somata into layer 1. They consist of spine-free proximal segments and spine bearing distal segments. Descending dendrites extend from the somata into the upper half of layer 3. The proximal segments bear few spines but branch into several tapered, distal segments which have a moderate covering of spines. One or two axons originate from the descending dendrites and descend through layer 3. The axons bear collaterals in the deep half of layer 3 and eventually bifurcate in the alveus. The medial branches run into the septum; the lateral branches course through other cortical areas. The axons bear frequent varicosities within medial cortex. Periventricular cells lie in the deep half of layer 3, either singly or in clusters. Their ascending dendrites extend radially into layer 1 where they branch into distal segments which resemble those of the candelabra cells. Their descending dendrites arborize horizontally in the alveus and bear a moderate covering of spines. Ependymal cells line the ventricular surface and send radial processes through the area's depth bearing lamellate processes.  相似文献   

9.
Summary The central connections of the goldfish olfactory bulb were studied with the use of horseradish peroxidase methods. The olfactory bulb projects bilaterally to ventral and dorsolateral areas of the telencephalon; further targets include the nucleus praeopticus periventricularis and a caudal olfactory nucleus near the nucleus posterior tuberis in the diencephalon, bilaterally. The contralateral bulb and the anterior commissure also receive an input from the olfactory bulb. Contralateral projections cross in rostral and caudal portions of the anterior commissure and in the habenular commissure. Retrogradely labeled neurons are found in the contralateral bulb and in three nuclei in the telencephalon bilaterally; the neurons projecting to the olfactory bulb are far more numerous on the ipsilateral side than in the contralateral hemisphere. Afferents to the olfactory bulb are found to run almost entirely through the lateral part of the medial olfactory tract, while the bulb efferents are mediated by the medial part of the medial olfactory tract and the lateral olfactory tract. Selective tracing of olfactory sub-tracts reveals different pathways and targets of the three major tract components. Reciprocal connections between olfactory bulb and posterior terminal field suggest a laminated structure in the dorsolateral telencephalon.  相似文献   

10.
1) Two efferent neurone populations - mitral and tufted cells - are present in the main structure of the rat olfactory bulb. 2) The tufted cells, whose axons leave the olfactory bulb, are scattered throughout the whole of the outer plexiform layer and some of them lie in the periglomelural layer. 3) The axons of some of the tufted cells lead to the rostral part of the prepyriform cortex (the anterior olfactory nucleus). 4) Our findings do not indicate that the tufted cells ensure monosynapltic interbulbar connection.  相似文献   

11.
The olfactory system of the pigeon (Columba livia) was examined. Our electrophysiological and experimental neuroanatomical (Fink-Heimer technique) data showed that axons from the olfactory bulb terminated in both sides of the forebrain. The cortex prepiriformis (olfactory cortex), the hyperstriatum ventrale and the lobus parolfactorius comprised the uncrossed terminal field. The crossed field included the paleostriatum primitivum and the caudal portion of the lobus parolfactorius, areas which were reached through the anterior commissure. In this report the relationships between areas that receive olfactory information and the possible roles that olfaction plays in the birds' behavior are discussed.  相似文献   

12.
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.  相似文献   

13.
This study describes the projection of cervical spinal afferent nerve fibers to the medulla in the brush-tailed possum, a marsupial mammal. After single dorsal roots (between C2 and T1) were cut in a series of animals, the Fink-Heimer method was used to demonstrate the projection fields of fibers entering the CNS via specific dorsal roots. In the high cervical spinal cord, afferent fibers from each dorsal root form a discrete layer in the dorsal funiculus. The flattened laminae from upper cervical levels are lateral and those from lower cervical levels are medial within the dorsal columns. All afferent fibers at this level are separated from gray matter by the corticospinal fibers in the dorsal funiculus. All cervical roots project throughout most of the length of the well-developed main cuneate nucleus in a loosely segmentotopic fashion. Fibers from rostral roots enter more lateral parts of the nucleus, and fibers from lower levels pass to more medial areas; but terminal projection fields are typically large and overlap extensively. At more rostral medullary levels, fibers from all cervical dorsal roots also reach the external cuneate nucleus. The spatial arrangement here is more complex and more extensively overlapped than in the cuneate nucleus. Rostral cervical root fibers reach ventral and ventrolateral areas of the external cuneate nucleus and continue to its rostral pole; more caudal root fibers project to more dorsal and medial regions within the nucleus. These results demonstrate that projection patterns of spinal afferents in this marsupial are similar to those seen in the few placental species for which detailed data concerning this system are available.  相似文献   

14.
Summary Primary olfactory projections in king salmon fry, Oncorhynchus tshawytscha, were studied with the cobaltlysine technique and after sectioning the entire head in a frozen state. The labeled axons can be traced from the olfactory epithelium, where cobalt was applied, into the olfactory bulb and to the ventral and lateral regions of the ventral telencephalon. The latter projection has not previously been reported, and may in actuality represent a transneuronal transport of cobalt. The terminations in the glomerular layer and in the external cellular layer of the bulb appear to be distributed differently in different parts of the bulb, suggesting regional specializations. A few neurons in the bulb were also always labeled suggesting that they may project to the olfactory epithelium.  相似文献   

15.
A cytoarchitectonic analysis of the telencephalon of the sea bass Dicentrarchus labrax, based on cresyl violet-stained serial transverse sections, is presented. Rostrally, the brain of the sea bass is occupied by sessile olfactory bulbs coupled to telencephalic hemispheres. The olfactory bulbs comprise an olfactory nerve fiber layer, a glomerular layer, an external cellular layer, a secondary olfactory fiber layer, and an internal cellular layer. Large terminal nerve ganglion cells are evident in the caudomedial olfactory bulbs. We recognized 22 distinct telencephalic nuclei which were classified in two main areas, the ventral telencephalon and the dorsal telencephalon. The ventral telencephalon displays four periventricular cell masses: the dorsal, ventral, supracommissural, and postcommissural nuclei; and four migrated populations: the lateral, central, intermediate, and entopeduncular nuclei. In addition, a periventricular cell population resembling the lateral septal organ reported in birds is observed in the ventral telencephalon of the sea bass. The dorsal telencephalon contains 13 nuclei, which can be organized into five major zones: the medial part, dorsal part, lateral part and its ventral, dorsal, and posterior divisions, the central part, and posterior part. Based on histological criteria, two cell masses are recognized in the ventral division of the lateral part of the dorsal telencephalon. The nucleus taenia is found in the caudal area of the dorsal telencephalon, close to the ventral area. This study represents a useful tool for the precise localization of the neuroendocrine territories and for the tracing of the neuronal systems participating in the regulation of reproduction and metabolism in this species.  相似文献   

16.
Olfactory receptor neurons can regenerate from basal stem cells. Receptor neuron lesion causes degenerative changes in the olfactory bulb followed by regeneration as new olfactory receptor axons innervate the olfactory bulb. To our knowledge, parametric analyses of morphometric changes in the olfactory bulb during degeneration and regeneration do not exist except in abstract form. To better characterize olfactory bulb response, we performed morphometric analysis in rats following reversible olfactory nerve lesion with diethyldithiocarbamate. We also performed anterograde tracing of the olfactory nerve with wheatgerm agglutinin linked to horseradish peroxidase. Results of morphometry and tracing were complementary. The glomerular layer and external plexiform layer showed shrinkage of 45 and 26%, respectively, at 9 days. No significant shrinkage occurred in any other layer. Individual glomeruli shrank by 40-50% at 3 and 9 days following lesion. These data show that degenerative changes occur both in the glomeruli and transneuronally in the external plexiform layer. Olfactory nerve regeneration (identified by WGA-HRP transport) paralleled volumetric recovery. Recovery occurred first in ventral and lateral glomeruli between 9 and 16 days followed by recovery in medial and dorsal glomeruli. These data indicate substantial transynaptic degeneration in the olfactory bulb and a heretofore unrecognized gradient in olfactory nerve regeneration that can be used to systematically study recovery of a cortical structure.  相似文献   

17.
本研究用免疫细胞化学技术观察了大鼠脑内参与兴奋性突触传递的代谢型谷氨酸受体5亚型(mGluR5)的精确定位分布.mGluR5阳性浓染的神经元胞体和纤维密集地分布于大脑皮质浅层、嗅球、伏核、尾壳核、前脑基底部、隔区、苍白球、腹侧苍白球、海马CA1和CA2区、下丘中央核、被盖背侧核和三叉神经脊束核尾侧亚核浅层;淡染而稀疏的mGluR5阳性神经元胞体和纤维见于屏状核、终纹床核、杏仁中央核、丘脑部分核团、上丘浅灰质层、外侧丘系背侧核和延髓中央灰质.  相似文献   

18.
Summary Vibra tome sections of male hamster brains were treated immunohistochemically with LHRH antiserum, and the anatomical distribution of LHRH immunoreactive cells and nerve fibers was assessed. LHRH-cell bodies are found in the ventral hypothalamus that includes its preoptic, anterior and central parts, in the septum, the olfactory tubercle, the main and accessory olfactory bulb, and the prepiriform cortex. In addition, extracerebral LHRH-neurons and ganglia exist in LHRH-positive nerves at the ventromedial surface of the olfactory tubercle and bulb as well as in olfactory nerves. Dense networks of LHRH-immunoreactive fibers are found in all regions where LHRH-cell bodies exist. Intraseptal connections reach the organum vasculosum of the lamina terminalis, the subfornical organ, and the lateral ventricle. Dorsolateral projections from the septum can be traced via the fimbria hippocampi and alveus to the ventral hippocampus, via the stria terminalis to the amygdala and piriform cortex. Ventrolateral projections extend from the level of the olfactory tubercle and preoptic-anterior hypothalamic area via the ventral amygdalofugal pathway to the prepiriform and piriform cortex as well as the amygdala. Dorsal supracallosal projections via the stria longitudinalis are seen in the induseum griseum and the cingulate cortex. Caudal efferents reach the habenula, interpeduncular nucleus, midbrain raphe, and central gray of the rostral fourth ventricle via the stria medullaris and fasciculus retroflexus and by a ventral projection via the periventricular and subventricular hypothalamus. A major portion of this ventrocaudal projection gives rise to a dense network in the median eminence. Anatomical relationships of LHRH-fibers to certain regions of the inner ventricular and outer brain surface are noted.Postdoctoral fellow of the Deutsche ForschungsgemeinschaftSupported by US PHS grant NS09914 and NRCHD grant HD03110  相似文献   

19.
Summary We have investigated the central connections of the classical olfactory system in the weakly electric fish Gnathonemus petersii using HRP and cobalt labelling techniques. The olfactory bulb projects bilaterally via the medial and lateral olfactory tracts to restricted areas of the telencephalon, namely to its rostromedial, lateral and posterior medial parts. The most extensive telencephalic target is the posterior terminal field, which arcs around the lateral forebrain bundle at levels posterior to the anterior commissure. Projections to the contralateral hemisphere cross in the ventral telencephalon rostral to the anterior commissure and via the posterior dorsal part of the anterior commissure; endings are also present within the anterior commissure. Bilateral projections to the preoptic area, to the nucleus posterior tuberis and to an area in the thalamus are apparent. In all cases, contralateral projections are less extensive than those on the side ipsilateral to the injected bulb. A projection via the medial olfactory tract can be followed to the contralateral bulb. Following injections into the olfactory bulb, retrogradely labelled neurons are found in the contralateral bulb and in six telencephalic areas; they are also present in the periventricular diencephalon and in an area lateral to the nucleus posterior tuberis. The present results support the suggestion that a reduction in olfactory input to the telencephalon occurs together with increased telencephalic differentiation in actinopterygian fishes.  相似文献   

20.
The cytoarchitectonics of the telencephalon of the channel catfish, Ictalurus punctatus, are described as a basis for experimental analysis of telencephalic afferents and efferents. The olfactory bulb comprises: (1) an outer layer of olfactory nerve fibers, (2) a glomerular layer, (3) an external cell layer, (4) an inner fiber layer, and (5) an internal cell layer. The telencephalic hemispheres comprise the areas ventralis and dorsalis telencephali. The area ventralis consists of: (1) a precommissural, periventricular zone including nucleus 'nother (Vn), the ventral nucleus (Vv), and the dorsal nucleus (Vd); (2) a precommissural, migrated zone of central (Vc) and lateral (VI) nuclei; (3) a supracommissural nucleus (Vs); (4) a caudal commissural zone of postcommissural (Vp) and intermediate (Vi) nuclei; and (5) a preoptic area (PP). The area dorsalis comprises: (1) medial (DM), (2) dorsal (Dd), (3) lateral [DL, containing dorsal (DLd), ventral (DLv), and posterior (DLp) regions], (4) posterior (DP), and (5) central (DC-1, -2, -3) areas. Nucleus taeniae (NT) is transitional between areas dorsalis and ventralis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号