首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Biosynthesis of Inulinases by Bacillus Bacteria   总被引:1,自引:0,他引:1  
Biosynthesis of extracellular inulinase by bacteria Bacillus polymyxa 29,B. polymyxa 722, and B. subtilis 68 was studied. The optimal parameters for the producer growth were as follows: pH 7.0, 33–35°C, growth duration 72 h. The presence of reduced mineral nitrogen or organic nitrogen was necessary for the enzyme biosynthesis. The inulinase biosynthesis was sharply activated in the presence of carbohydrates. B. polymyxa 722 and B. polymyxa 29 displayed the maximum activities on a starch-containing culture medium; the maximum activity of B. subtilis 68 was in the presence of sucrose. Inulin did not induce inulinase biosynthesis by the strains studied. The time course of bacteria growth and enzyme biosynthesis was studied.  相似文献   

2.
Inulinase from Bacillus polymyxa 722 hydrolyzing a polyfructosan inulin was studied. The dependence of inulinase activity on pH, measurements of pK value, calculation of ionization heat, photoinactivation with methylene blue, and inhibition with p-chloromercuribenzoate suggest that the active center of this enzyme contains imidazole and sulfhydryl groups. A possible mechanism underlying cleavage of beta-2,1-fructoside bonds in the inulin molecule with inulinase is considered.  相似文献   

3.
A range of Bacillus subtilis strains and other Bacillus species were screened for mannanase, β-mannosidase and galactanase activities. Maximum mannanase activity, 106.2 units/ml, was produced by B. subtilis NRRL 356. β-Mannosidase and galactanase activities from all strains were relatively low. The effect of carbon and nitrogen source on mannanase and galactanase production by B. brevis ATCC 8186, B. licheniformis ATCC 27811, B. polymyxa NRRL 842 and B. subtilis NRRL 356 was investigated. Highest mannanase production was observed in the four strains tested when the mannan substrate, locust bean gum, was used as carbon source. Induction was most dramatic in the case of B. subtilis NRRL 356 where only basal enzyme levels were produced in the presence of other carbon sources. β-Mannosidase was induced in the four Bacillus cultures by locust bean gum. Results indicated that galactose acted as an inducer for production of galactanase. Organic and inorganic nitrogen sources resulted in induction of high mannanase titres in B. subtilis. Highest galactanase activity was produced by each organism in media containing sodium nitrate as nitrogen source. Mannanases from B. brevis, B. licheniformis, B. polymyxa and B. subtilis retained 100% residual activity after a 3 h incubation at 65°C, 65°C, 60°C and 55°C respectively. Galactanases retained more than 95% activity at 55°C after 3 h. The pH optima of mannanases ranged from 6.5–6.8 whereas galactanases ranged from 5.1 in the case of B. brevis to 7.0 for B. polymyxa.  相似文献   

4.
Expression of the Bacillus subtilis or Bacillus amyloliquefaciens sacB gene in the presence of sucrose is lethal for a variety of bacteria. Sucrose-induced lethality can be used to select for inactivation of sacB by insertion of heterologous DNA in sensitive bacteria. This procedure has not been applicable to B. subtilis heretofore because expression of wild-type sacB is not detrimental to B. subtilis. The W29 mutation in the B. amyloliquefaciens sacB gene interferes with processing of the levansucrase signal peptide. The W29 mutation does not affect growth of B. subtilis in media lacking sucrose. However, this mutation inhibited growth of B. subtilis in media containing sucrose. Inactivation of the fructose polymerase activity encoded by sacB indicated that levan production was essential for sucrose-induced lethality. As a result, it was possible to select for cloned DNA in B. subtilis by insertional inactivation of the mutant sacB gene located on a multicopy plasmid vector in medium containing sucrose.  相似文献   

5.
The Bacillus polymyxa CF43 lelA gene, expressing both sucrose and fructan hydrolase activities, was isolated from a genomic library of B. polymyxa screened in Bacillus subtilis. The gene was detected as expressing sucrose hydrolase activity; B. subtilis transformants did not secrete the lelA gene product (LelA) into the extracellular medium. A 1.7-kb DNA fragment sufficient for lelA expression in Escherichia coli was sequenced. It contains a 548-codon open reading frame. The deduced amino acid sequence shows 54% identity with mature B. subtilis levanase and is similar to other fructanases and sucrases (beta-D-fructosyltransferases). Multiple-sequence alignment of 14 of these proteins revealed several previously unreported features. LelA appears to be a 512-amino-acid polypeptide containing no canonical signal peptide. The hydrolytic activities of LelA on sucrose, levan, and inulin were compared with those of B. subtilis levanase and sucrase, confirming that LelA is indeed a fructanase. The lelA gene in the chromosome of B. polymyxa was disrupted with a chloramphenicol resistance gene (cat) by "inter-gramic" conjugation: the lelA::cat insertion on a mobilizable plasmid was transferred from an E. coli transformant to B. polymyxa CF43, and B. polymyxa transconjugants containing the lelA::cat construct replacing the wild-type lelA gene in their chromosomes were selected directly. The growth of the mutant strain on levan, inulin, and sucrose was not affected.  相似文献   

6.
The interactive effects of phosphate solubilizing bacteria, N2 fixing bacteria and arbuscular mycorrhizal fungi (AMF) were studied in a low phosphate alkaline soil amended with tricalcium insoluble source of inorganic phosphate on the growth of an aromatic grass palmarosa (Cymbopogon martinii). The microbial inocula consisted of the AM fungus Glomus aggregatum, phosphate solubilizing rhizobacteria Bacillus polymyxa and N2 fixing bacteria Azospirillum brasilense. These rhizobacteria behaved as "mycorrhiza helper" and enhanced root colonization by G. aggregatum in presence of tricalcium phosphate at the rate of 200 mg kg(-1) soil (P1 level). Dual inoculation of G. aggregatum and B. polymyxa yielded 21.5 g plant dry weight (biomass), while it was 21.7 g in B. polymyxa and A. brasilense inoculated plants as compared to 14.9 g of control at the same level. Phosphate content was maximum (0.167%) in the combined treatment of G. aggregatum, B. polymyxa and A. brasilense at P1 level, however acid phosphatase activity was recorded to be 4.75 pmol mg(-1) min(-1) in G. aggregatum, B. polymyxa and A. brasilense treatment at P0 level. This study indicates that all microbes inoculated together help in the uptake of tricalcium phosphate which is otherwise not used by the plants and their addition at 200 mg kg(-1) of soil gave higher productivity to palmarosa plants.  相似文献   

7.
The gene for beta-amylase was isolated from Bacillus polymyxa by molecular cloning in B. subtilis. B. subtilis cells containing this gene express and secrete an amylase which resembles the B. polymyxa beta-amylase and barley beta-amylase in terms of the products it generates during carbohydrate hydrolysis. Starch hydrolysis with this beta-amylase produces maltose, not glucose, whereas maltotriose and cycloheptaose are resistant to the action of this beta-amylase. The enzyme has a molecular weight of approximately 68,000. Restriction endonuclease mapping demonstrated that the DNA inserted in pBD64 and containing the gene is approximately 3 kilobases in length.  相似文献   

8.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular gamma-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

9.
Metabolic properties of Bacillus polymyxa 153 were studied during vegetative growth, polymyxin B biosynthesis and active sporulation. In the cell extracts there was detected activity of exoproteases, endoproteases, tricarboxylic acid cycle dehydrogenases and pyruvate dehydrogenase. The enzymes activity in the cells growing into spores was higher than that in the cells of the vegetative developmental type. The activity of the enzymes depended on the culture age.  相似文献   

10.
11.
Bacillus subtilis possesses two glutamate racemase isozymes, RacE and YrpC. For the first time, we succeeded in constructing glutamate racemase-gene disruptants of B. subtilis. Phenotypic analysis of their D-glutamate auxotrophy indicated that the RacE-type glutamate racemase is important for ensuring maximum growth rate but dispensable. The YrpC-type glutamate racemase probably operates as an anaplerotic enzyme for RacE, especially under liquid culture conditions. We found novel applicability of RacE-less mutants inheriting only a marginal activity for endogenous D-glutamate supply, viz. the employment for the in vivo identification of D-glutamate-consuming systems. In fact, the genetic induction of a poly-gamma-glutamate synthetic system led a RacE-less mutant to severe growth suppression, which was overcome in the presence of a high concentration of exogenous D-glutamate. The results indicate that a significant amount of D-glutamate is consumed during poly-glutamate biosynthesis. To our knowledge, this is the first report of conditional D-glutamate auxotrophy for B. subtilis.  相似文献   

12.
Inulinase from Bacillus polymyxa 722, hydrolyzing a polyfructosan inulin, was studied. The dependence of inulinase activity on pH, measurements of pK value, calculation of the ionization heat, photoinactivation with methylene blue, and inhibition with p-chloromercuribenzoate suggest that the active center of this enzyme contains imidazole and sulfhydryl groups. A possible mechanism underlying the cleavage of -2,1-fructoside bonds in the inulin molecule by inulinase is considered.  相似文献   

13.
14.
The occurrence, structure, and glycosylation of lipoteichoic acids were studied in 15 Bacillus strains, including Bacillus cereus (4 strains), Bacillus subtilis (5 strains), Bacillus licheniformis (1 strain), Bacillus polymyxa (2 strains), and Bacillus circulans (3 strains). Whereas in the cells of B. polymyxa and B. circulans neither lipoteichoic acid nor related amphipathic polymer could be detected, the cells of other Bacillus strains were shown to contain lipoteichoic acids built up of poly(glycerol phosphate) backbone chains and hydrophobic anchors [gentiobiosyl(beta 1----1/3)diacylglycerol or monoacylglycerol]. The lipoteichoic acid chains of the B. licheniformis strain and three of the B. subtilis strains had N-acetylglucosamine side branches, but those of the B. cereus strains and the remaining two B. subtilis strains did not. The membranes of the B. licheniformis strain and the first three B. subtilis strains exhibited enzyme activities for the synthesis of beta-N-acetylglucosamine-P-polyprenol and for the transfer of N-acetylglucosamine from this glycolipid to endogenous acceptors presumed to be lipoteichoic acid precursors. In contrast, the membranes of the other strains lacked both or either of these two enzyme activities. The correlation between the occurrence of N-acetylglucosamine-linked lipoteichoic acids and the distribution of these enzymes is consistent with the previously proposed function of beta-N-acetylglucosamine-P-polyprenol as a glycosyl donor in the introduction of alpha-N-acetylglucosamine branches to lipoteichoic acid backbone chains.  相似文献   

15.
The Bacillus subtilis sleB gene, which codes for the enzyme homologous to the germination-specific amidase from Bacillus cereus, was cloned and its nucleotide sequence was determined. Sequence analysis showed that it had an open reading frame of 918 bp, coding for a polypeptide of 305 amino acids with a putative signal sequence of 29 residues. Enzyme activity was not found in germination exudate of B. subtilis spores, which differs from the case of B. cereus enzyme. A B. subtilis mutant with an insertionally inactivated sleB gene revealed normal behavior in growth and sporulation. However, the sleB mutant was unable to complete germination mediated by L-alanine.  相似文献   

16.
Sirishinha, Stitaya (University of Rochester School of Medicine and Dentistry, Rochester, N.Y.), and Peter Z. Allen. Immunochemical studies on alpha-amylase. III. Immunochemical relationships among amylases from various microorganisms. J. Bacteriol. 90:1120-1128. 1965.-Immunochemical relationships among amylases obtained from a selected group of microorganisms were examined, and a cross-reaction was detected between the alpha-amylases of Bacillus stearothermophilus and B. subtilis. Immunodiffusion and quantitative precipitin studies, as well as cross-neutralization tests, indicate that B. stearothermophilus alpha-amylase reacts with a portion of antibody present in antisera to crystalline B. subtilis alpha-amylase. Amylases from these two species thus have some aspects of structure in common. Limited data obtained by immunodiffusion suggest that groupings which confer cross-reactivity to the B. stearothermophilus enzyme are lost after exposure to mercaptoethanol in the presence of ethylenediamine-tetraacetate, followed by treatment with iodoacetamide. With the antisera employed and within the concentration range examined, no immunochemical cross-reaction was observed among amylases from Aspergillus oryzae, B. subtilis, B. polymyxa, B. macerans, Pseudomonas saccharophila, and Euglena sanguinis. Immunoelectrophoresis of partially purified B. stearothermophilus alpha-amylase by use of antiserum to the crude enzyme, together with localization of amylase activity in immunoelectrophoretic plates, suggests that B. stearothermophilus alpha-amylase is antigenic in the rabbit.  相似文献   

17.
The facultative anaerobes Bacillus polymyxa Hino G, B. polymyxa Hino J, and B.macerans were observed to have imcomplete tricarboxylic acid cycles. They were devoid of malate dehydrogenase and all had very low levels of alpha-ketoglutarate dehydrogenase. B. polymyxa Hino J was devoid of alpha-ketoglutarate dehydrogenase when grown aerobically and anerobically. Citrate synthase from B. polymyxa was inhibited by adenosine triphosphate but not reduced nicotinamide adenine dinucleotide and resembled enzymes from other gram-positive bacteria in this respect. Like the citrate synthases from gram-negative, facultative anaerobes and chemolithotrophs, the enzyme from B. polymyxa was inhibited by alpha-ketoglutarate. Inhibition by adenosine triphosphate was shown to be competitive with acetyl-coenzyme A and alpha-ketoglutarate inhibition was competitive with oxaloacetate.  相似文献   

18.
A procedure was developed for purification of ornithine transcarbamylase (OTCase) to near homogeneity from Bacillus subtilis 168. The purified native enzyme existed as a mixture of dimeric, tetrameric, and hexameric forms, but was converted to the dimer in the presence of 2-mercaptoethanol. The molecular weight of the subunit was 44,000. Some general kinetic properties of the enzyme were described. OTCase was repressed by arginine in growing B. subtilis cells, but the enzyme was induced by arginine at the end of exponential growth. Specific antibodies against the purified OTCase were used to show that the same enzyme was produced under all conditions. These results and studies of a mutant lacking OTCase demonstrated that B. subtilis produced only a single OTCase. OTCase was clearly required for arginine biosynthesis, but the physiological function of OTCase induction by arginine was obscure. OTCase was not induced by, or required for, growth on arginine as a carbon and nitrogen source. Absence of OTCase in a mutant did not alter the yield or arginine content of its spores in comparison to a strain containing OTCase.  相似文献   

19.
We initially aligned 28 different cellulase sequences in pairwise fashion and found half of them have the sequence -Asn-Glu-Pro- located in a region flanked by hydrophobic-rich amino acids. Based on lysozyme as a model, the glutamate residue could be essential for enzyme function. We tested this possibility by site-directed mutagenesis of the genes coding Bacillus polymyxa and Bacillus subtilis endo-beta-1,4-glucanases. The genes and amino acid sequences of these two enzymes show very little similarity. Change of Glu-194 and Glu-169 to the isosteric glutamine form in these respective enzymes resulted in a dramatic loss of CMCase activity which could be restored by reverse mutation. Similar mutations to less-conserved residues, Glu-72 and Glu-147, of the B. subtilis enzyme did not cause any loss of activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号