首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
岛屿栖息地鸟类群落的丰富度及其影响因子   总被引:25,自引:4,他引:21  
1997年1月至1997年12月间,以杭州市的园林鸟类群落为研究对象,对岛屿栖息地鸟类群落的丰富度与面积,人为干扰,内部结构和周围景观结构等多种因素的关系进行了系统的分析和检验。在杭州市各园林中共观察到82种鸟类。园林单次调查的鸟类物种数(S)与园林全年总物种数(Sy)与园林面积(A)的最佳回归拟合方程分别为;S= 2.7432A^0.3846,Sy=10.6574A^0.3669。杭州市园林鸟类群落物种-面积关系的成因不支持平衡假说,随机取样假说,栖息地多样性假说和干扰假说,岛屿栖息地鸟类群落的丰富度是多因素综合作用的结果,包括取样面积效应(排除了取样面积效应之后,小园林具有更高的物种密度),栖息地结构的多样性(其中树种多样性是最主要的影响因子),干扰因素,物种因素和研究尺度等几个方面。  相似文献   

2.
千岛湖雀形目鸟类群落嵌套结构分析   总被引:6,自引:0,他引:6  
2006年4月至2007年11月, 采用截线法对千岛湖20个岛屿上的雀形目鸟类种类组成进行调查, 检验其群落是否符合嵌套式分布的格局。此外通过野外直接记录与辨认法对岛屿上的植物种类组成进行调查, 同时通过查阅文献资料和野外调查获得鸟类体长、分布宽度和生境专属性等生活史特征参数, 以及采用GIS分析测定岛屿面积和隔离度参数, 进而分析和探讨雀形目鸟类群落嵌套格局的影响因素。结果显示, 千岛湖岛屿雀形目鸟类群落呈现显著的嵌套结构, 岛屿面积、植物物种丰富度和生境专属性对其嵌套结构具显著性的影响。千岛湖岛屿雀形目鸟类存在着选择性灭绝过程; 植物物种丰富度和鸟类生境专属性则通过影响鸟类在不同生境下的分布对鸟类群落嵌套结构产生影响。上述结果表明千岛湖岛屿雀形目鸟类群落嵌套格局同时受到栖息地和物种两方面因素的影响, 为此我们认为应更多地关注那些面积较大和植物物种丰富度较高的岛屿, 以及生境专属性较高的种类等鸟类多样性及其栖息地的保护策略。  相似文献   

3.
物种数和面积、纬度之间关系的研究   总被引:5,自引:3,他引:2  
张知彬 《生态学报》1995,15(3):305-311
本文在排除了“平衡假说”中的“岛屿效应”的情况下,估算了世界部分国家兽类,鸟类,爬行类和两栖类的物种-面积,物种-纬度及物种-面积-纬度关系式中的参数。研究发现,大陆连续栖息地性的z值并不比岛屿或栖息地“岛屿”性的z值小,z值与面积样本大小和范围有关。栖息地异质性对z值的大小也起着很重要的作用。本文建立了全球脊推动物物种-面积-纬度相关模型,即Logs=b_o+b_1·LogA+b_2·L,总复合相关系数达0.9028(p<0.01),可用于预测或评估全球脊推动物种数分布或由于栖息地破坏后物种数消失的情况。  相似文献   

4.
温带次生林的岛屿化对鸟类物种多样性及密度的影响   总被引:4,自引:0,他引:4  
邓文洪  高玮 《生物多样性》2005,13(3):204-212
由于自然事件的影响和人类活动的干扰,越来越多的大片森林破碎成彼此孤立、面积不一的森林岛屿,这种变化无疑会对某些动物的分布模式及行为特征产生影响。于2000和2001年的春夏季,在吉林省左家自然保护区及土门岭地区,采用点样法对18块森林岛屿(面积范围:4.3–76.9hm2)中的鸟类物种多样性及密度进行了调查。主要目的是检测森林岛屿的面积效应是否对鸟类物种多样性及密度产生影响,同时分析经典的岛屿生物地理理论是否可以解释破碎化后的森林岛屿面积与物种的关系。结果表明,鸟类物种多样性在年间没有显著变化,但鸟类的密度在不同年间变化较大。不同面积森林岛屿中的鸟类物种多样性有所差异,所包含的鸟类物种数从12种到43种不等。尽管有些面积较大的斑块所包含的物种数较少,但鸟类物种数的总体趋势是随着斑块面积的增大而增多。不同鸟类对森林岛屿面积的反应并不相同,灰椋鸟(Sturnuscineraceus)、红尾伯劳(Laniuscristatus)、灰头鹀(Embrizaspodocephala)等在面积较小的斑块中密度较大,而山鹡鸰(Dendronanthusindicus)、树鹨(Anthushodg-soni)、灰背鸫(Turdushortulorum)等几乎不分布于小面积斑块之中。森林岛屿中鸟类物种随着面积变化的变异方式符合经典的岛屿生物地理理论的基本模式,但Z值和C值差异较大  相似文献   

5.
上海闵行区园林鸟类群落嵌套结构   总被引:4,自引:2,他引:2  
城市中的园林绿地呈现斑块状分布,其栖息地特征与岛屿栖息地相似。2008年11月至2009年10月,对上海市闵行区内的7块城市绿地进行调查,记录雀形目鸟类的分布情况,并运用Nestedness temperature calculator软件,检验其群落结构是否符合嵌套结构。运用Arc GIS软件分析该地区的卫星图片,收集7块样地的面积、绿地盖度、水源距离和人为干扰程度等数据,结合实地调查所得到的数据,分析这一嵌套结构的形成原因和影响因素。结果显示:上海市闵行区城市绿地中的雀形目鸟类分布是显著的嵌套结构,园林面积、绿地面积和水源情况都对其嵌套结构有显著影响。但是与真正岛屿上存在的群落分布嵌套结构不同,人为干扰程度对这一结构也有非常明显的影响。基于上述结果可以看出,影响上海市园林鸟类的群落嵌套结构的主要原因是栖息地的结构和人为干扰程度。因此,建议在规划和建设城市公园和绿地时,应该偏重于面积较大,植被盖度和丰富度高,结构合理的园林,并且尽量减少人为干扰。  相似文献   

6.
城市鸟类对斑块状园林栖息地的选择性   总被引:61,自引:3,他引:58  
园林因在城市中呈斑块状分布而具有许多岛屿栖息地的特性,其内部结构和景观水平的结构同时也受到城市化的影响。对杭州市20个园林中鸟类物种的选择性分布进行了调查和分析,重点探讨了鸟类物种与园林面积、内部结构、微栖息地类型的分布、景观水平的结构、人为干扰等栖息地因素的关系。结果表明,杭州城市鸟类对园林栖息地具有较强的选择性,这不仅与园林的面积有关,还与园林的形状、植被盖度、微栖息地类型、连通性、隔离度、周围用地以及人为干扰等多种因素密切相关。园林栖息地间的异质性以及鸟类物种与栖息地结构的密切关系是园林鸟类选择性分布的主要原因。  相似文献   

7.
为揭示城镇化进程中生境破碎化对鸟类多样性及分布格局的影响, 本研究于2017-2019年每年的4-8月使用样线法对贵州花溪大学城26块破碎化林地(面积介于0.3-290.4 ha)中的鸟类群落进行了10次调查。共记录到鸟类78种, 隶属于11目37科。其中, 东洋界物种数占56.4%, 古北界物种数占32.1%, 广布种占11.5%; 有中国特有种1种。剔除高空飞行、非森林鸟类及偶然出现物种后, 不同斑块中的鸟类物种数介于12-55之间, 平均每个斑块有23.2 ± 10.5种。线性回归分析显示, 鸟类物种丰富度与林地斑块的面积有显著相关性, 斑块面积越小, 鸟类物种丰富度越低; 斑块隔离度对物种丰富度没有显著影响。基于物种多度分布矩阵的WNODF (weighted nestedness metric based on overlap and decreasing fill)嵌套分析显示, 不同斑块中鸟类群落呈现出反嵌套结构。小斑块中鸟类物种丰富度较低可能与植物丰富度较低、食物资源稀缺和繁育条件不足有关, 但短距离的隔离对鸟类迁入或扩散影响有限。环境过滤效应、种间竞争或优先效应可能导致不同斑块间存在较大的物种组成差异, 从而导致反嵌套格局。因此, 本研究建议在城市规划建设中应注重维持栖息地的完整性, 对不同面积大小的破碎化斑块都应加以保护。  相似文献   

8.
邓文洪  赵匠  高玮 《生态学报》2003,23(6):1087-1094
于1998~2000年夏季。运用GPS定位系统确定了12块面积范围为6.5~112.8hm。的彼此隔离的森林斑块。比较了斑块面积和栖息地质量对繁殖鸟类群落结构的影响。结果表明:不同面积斑块中繁殖鸟类的群落结构有所差异。各斑块所容纳的繁殖鸟类的物种数从4种到26种不等。鸟类物种数随着斑块面积的增大而增多。不同鸟类对斑块面积的反应并不相同,耐边缘种偏爱面积较小的斑块。而非边缘种偏爱在大面积的斑块中繁殖。斑块栖息地质量也是影响鸟类群落结构的重要因素,质量好的斑块包容的鸟类物种较多。鸟类物种丰富度与斑块质量的相关性(R2=0.67)小于与斑块面积的相关性(R2=0.88)。各斑块中的鸟类群落结构在不同年份间比较相似。栖息地破碎化不但缩小了栖息地面积。同时也不同程度地降低了栖息地的质量。从而消极地影响着鸟类群落结构的稳定性和鸟类的物种多样性。  相似文献   

9.
千岛湖岛屿小型兽类群落的多样性   总被引:3,自引:1,他引:2  
2007 年秋季和2008 年春季,选取千岛湖地区14 个岛屿和2 个半岛作为样地,采用夹夜法进行小型兽类群落组成调查。两季度共布夹20 400 个,捕获小型兽类1 141 只,隶属2 目3 科9 属13 种,啮齿目(Rodentia)鼠科(Muridae)10 种和仓鼠科(Cricetidae)1 种,食虫目(Insectivora)鼩鼱科(Soricidae)2 种。利用以上结果分析其群落多样性,结果显示:14 个岛屿小型兽类群落春、秋两季的多样性指数、均匀度指数和优势度指数均呈现极显著差异且优势种发生变化;对可能影响岛屿小型兽类群落多样性的岛屿面积、距最近陆地距离、距最近大岛距离和植物丰富度等因素进行逐步回归分析,发现只有植物丰富度对小型兽类群落的物种丰富度有显著影响;对16 个样地按照物种组成比进行聚类,许源半岛样地与14 个岛屿聚为一类,姚家半岛样地单独归为一类,相似性指数比较结果亦显示姚家半岛样地与其它样地的相似性指数偏低。结论:景观破碎化导致千岛湖岛屿小型兽类群落的稳定性下降,物种多样性季节变化强烈;随岛屿面积的增加,小型兽类物种丰富度并非总是增加的,而是出现反复,呈现明显的小岛效应;14 个岛屿的物种与许源半岛样地物种构成比接近,推断在水库未形成前属同一生境。  相似文献   

10.
片断化生境中群落的物种组成常呈现嵌套分布格局。2013年7-8月, 我们在浙江舟山群岛采用截线法对28个岛屿上的蝴蝶群落进行了野外调查, 探讨了岛屿物种嵌套分布格局及其影响因素。通过测量采集标本获得蝶类的生活史特征(最小需求面积、翅展和体重), 查阅文献资料获得蝶类的栖息地特征(岛屿面积、距最近大陆距离和距最近大岛距离), 分析了影响蝶类群落嵌套结构的因素。研究结果显示: (1)舟山群岛蝶类群落符合嵌套分布格局; (2)岛屿面积和物种最小需求面积对嵌套格局的形成有显著影响; (3)舟山群岛蝶类群落嵌套格局的形成支持选择性灭绝假说; (4)随机检验零模型结果显示该嵌套分布格局并非采样偏差造成的。因此, 在制定舟山群岛区域蝶类保护措施时, 应优先考虑那些分布在面积较大岛屿的和最小需求面积较大的物种。  相似文献   

11.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation.Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats.In this paper,the relationships between richness,assemblage,and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou,China.Field investigations of bird communities,using the line transect method,were conducted from January to December,1997.Each woodlot was surveyed 16 times during the year.Results indicated that bird richness was higher,per unit area,in the smaller woodlots than the larger ones,and overall bird density decreased with the increase in the size of woodlot.However,the evenness of species abundance increased with the area,and small woodlots were usually dominated by higher density species and large woodlots by medium density species.Most species occurring in the small woodlots also occurred in larger woodlots.Also,bird communities among urban woodlots showed a nestedness pattern in assemblage.These patterns implied that the main impacts of woodland habitat fragmentation are:(1) species are constricted and thus species number will increase at a given sample size;(2) as surface area decreases,the proportion of forest edge species as to interior species will increase;(3)community abundance will therefore increase per unit area but most individuals will be from a few dominant species;and (4) overall species diversity will decrease at a habitat level as well as at a region level.These patterns of community in response to the island features were therefore summarized as "island effects in community".The underlying processes of such observations were also examined in this paper.Woodlot area,edge ratio,isolation,and habitat nestedness were considered as the important factors forming the island effects in community.High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity,especially in urban woodlots.  相似文献   

12.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation. Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats. In this paper, the relationships between richness, assemblage, and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou, China. Field investigations of bird communities, using the line transect method, were conducted from January to December, 1997. Each woodlot was surveyed 16 times during the year. Results indicated that bird richness was higher, per unit area, in the smaller woodlots than the larger ones, and overall bird density decreased with the increase in the size of woodlot. However, the evenness of species abundance increased with the area, and small woodlots were usually dominated by higher density species and large woodlots by medium density species. Most species occurring in the small woodlots also occurred in larger woodlots. Also, bird communities among urban woodlots showed a nestedness pattern in assemblage. These patterns implied that the main impacts of woodland habitat fragmentation are: (1) species are constricted and thus species number will increase at a given sample size; (2) as surface area decreases, the proportion of forest edge species as to interior species will increase; (3) community abundance will therefore increase per unit area but most individuals will be from a few dominant species; and (4) overall species diversity will decrease at a habitat level as well as at a region level. These patterns of community in response to the island features were therefore summarized as “island effects in community”. The underlying processes of such observations were also examined in this paper. Woodlot area, edge ratio, isolation, and habitat nestedness were considered as the important factors forming the island effects in community. High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity, especially in urban woodlots. __________ Translated from Acta Ecologica Sinica, 2005, 25(4): 657–663 [译自: 生态学报, 2005, 25(4): 657–663]  相似文献   

13.
Aim To compare the ability of island biogeography theory, niche theory and species–energy theory to explain patterns of species richness and density for breeding bird communities across islands with contrasting characteristics. Location Thirty forested islands in two freshwater lakes in the boreal forest zone of northern Sweden (65°55′ N to 66°09′ N; 17°43′ E to 17°55′ E). Methods We performed bird censuses on 30 lake islands that have each previously been well characterized in terms of size, isolation, habitat heterogeneity (plant diversity and forest age), net primary productivity (NPP), and invertebrate prey abundance. To test the relative abilities of island biogeography theory, niche theory and species–energy theory to describe bird community patterns, we used both traditional statistical approaches (linear and multiple regressions) and structural equation modelling (SEM; in which both direct and indirect influences can be quantified). Results Using regression‐based approaches, area and bird abundance were the two most important predictors of bird species richness. However, when the data were analysed by SEM, area was not found to exert a direct effect on bird species richness. Instead, terrestrial prey abundance was the strongest predictor of bird abundance, and bird abundance in combination with NPP was the best predictor of bird species richness. Area was only of indirect importance through its positive effect on terrestrial prey abundance, but habitat heterogeneity and spatial subsidies (emerging aquatic insects) also showed important indirect influences. Thus, our results provided the strongest support for species–energy theory. Main conclusions Our results suggest that, by using statistical approaches that allow for analyses of both direct and indirect influences, a seemingly direct influence of area on species richness can be explained by greater energy availability on larger islands. As such, animal community patterns that seem to be in line with island biogeography theory may be primarily driven by energy availability. Our results also point to the need to consider several aspects of habitat quality (e.g. heterogeneity, NPP, prey availability and spatial subsidies) for successful management of breeding bird diversity at local spatial scales and in fragmented or insular habitats.  相似文献   

14.
Aim We used insular lizard communities to test the predictions of two hypotheses that attempt to explain patterns of species richness on small islands. We first address the subsidized island biogeography (SIB) hypothesis, which predicts that spatial subsidies may cause insular species richness to deviate from species–area predictions, especially on small islands. Next, we examine the small island effect (SIE), which suggests small islands may not fit the traditional log‐linear species–area curve. Location Islands with arthropodivorous lizard communities throughout the Gulf of California. Methods To evaluate the SIB hypothesis, we first identified subsidized and unsubsidized islands based on surrogate measures of allochthonous productivity (i.e. island size and bird presence). Subsequently, we created species–area curves from previously published lizard species richness and island area data. We used the residuals and slopes from these analyses to compare species richness on subsidized and unsubsidized islands. To test for an SIE, we used breakpoint regression to model the relationship between lizard species richness and island area. We compared results from this model to results from the log‐linear regression model. Results Subsidized islands had a lower slope than unsubsidized islands, and the difference between these groups was significant when small islands were defined as < 1 km2. In addition to comparing slopes, we tested for differences in the magnitude of the residuals (from the species–area regression of all islands) for subsidized vs. unsubsidized islands. We found no significant patterns in the residual values for small vs. large islands, or between islands with and without seabirds. The SIE was found to be a slightly better predictor of lizard species richness than the traditional log‐linear model. Main conclusions Predictions of the SIB hypothesis were partially supported by the data. The absence of a significant SIE may be a result of spatial subsidies as explained by the SIB hypothesis and data presented here. We conclude by suggesting potential scenarios to test for interactions between these two small island hypotheses. Future studies considering factors affecting species richness should examine the possible role of spatial subsidies, an SIE, or a synergistic effect of the two in data sets with small islands.  相似文献   

15.
We analyzed the butterfly communities in the newly designed city parks (area C), “newly opened habitat islands”, of Tsukuba City, central Japan. The area constituted a natural ecological experiment on the mainland for clarifying the pattern and process of faunal immigration. We compared butterfly communities in area C with those in two other areas in the light of the theory of island biogeography and the concept of generalist/specialist. Our results showed the following: (1) Fewer species were found in area C than in other areas, due largely to the absence of many specialist types, restricted and habitat specialists, and/or low density species in the area. Generalist types, widespread and habitat generalists, and/or high density species predominated in area C. (2) The difference in the species numbers among the three sections within area C could be explained by the habitat structure in and around the respective sections. (3) The densities of many species were low in area C, probably due to its man-modified habitat structure. In particular, several species occurred at extremely low densities in area C, but at high densities in other areas. (4) The internal structure of the habitat island butterfly community in area C was almost perfectly consistent with that of “quasi-equilibrium” communities that appear during the colonization of an island. Our results demonstrate that the synergetic application of the generalist/specialist concept and the island biogeography theory is effective for the understanding of the patterns and structures of habitat island communities.  相似文献   

16.
Aim Comparisons among islands offer an opportunity to study the effects of biotic and abiotic factors on small, replicated biological communities. Smaller population sizes on islands accelerate some ecological processes, which may decrease the time needed for perturbations to affect community composition. We surveyed ants on 18 small tropical islands to determine the effects of island size, isolation from the mainland, and habitat disturbance on ant community composition. Location Thousand Islands Archipelago (Indonesian name: Kepulauan Seribu) off Jakarta, West Java, Indonesia. Methods Ants were sampled from the soil surface, leaf litter and vegetation in all habitat types on each island. Island size, isolation from the mainland, and land‐use patterns were quantified using GIS software. The presence of settlements and of boat docks were used as indicators of anthropogenic disturbance. The richness of ant communities and non‐tramp ant species on each island were analysed in relation to the islands’ physical characteristics and indicators of human disturbance. Results Forty‐eight ant species from 5 subfamilies and 28 genera were recorded from the archipelago, and approximately 20% of the ant species were well‐known human‐commensal ‘tramp’ species. Islands with boat docks or human settlements had significantly more tramp species than did islands lacking these indicators of anthropogenic disturbance, and the diversity of non‐tramp species decreased with habitat disturbance. Main conclusions Human disturbance on islands in the Thousand Islands Archipelago promotes the introduction and/or establishment of tramp species. Tramp species affect the composition of insular ant communities, and expected biogeographical patterns of ant richness are masked. The island with the greatest estimated species richness and the greatest number of unique ant species, Rambut Island, is a forested bird sanctuary, highlighting the importance of protected areas in preserving the diversity of species‐rich invertebrate faunas.  相似文献   

17.
Anthropogenically driven changes in bird communities on oceanic islands exemplify the biotic upheaval experienced by island floras and faunas. While the influence of invasions and extinctions on species richness and beta‐diversity of island bird assemblages has been explored, little is known about the impact of these invasions and extinctions on phylogenetic diversity. Here we quantify phylogenetic diversity of island bird assemblages resulting from extinctions alone, invasions alone, and the combination of extinctions and invasions in the historic time period (1500 CE to the current), and compare it to the expected phylogenetic diversity that would result if these processes involved randomly selected island bird species. We assessed phylogenetic diversity and structure at the scale of the island (n = 152), the archipelago containing the islands (n = 22), and the four oceans containing the archipelagos using three measures. We found that extinction, invasion, and the combination of invasion and extinction generally resulted in lower phylogenetic diversity than expected, regardless of the spatial scale examined. We conclude that extinction and invasion of birds on islands are non‐random with respect to phylogeny and that these processes generally leave bird assemblages with lower phylogenetic diversity than we would expect under random invasion or extinction.  相似文献   

18.
Scale, the scale dependency of patterns and processes, and the ways that organisms scale their responses to these patterns and processes are central to island and landscape ecology. Here, we take a database of studies in island ecology and investigate how studies have changed over a 40-year period with respect to spatial scale and organisms studied. We demonstrate that there have been changes in the spatial scale of islands studied and that there is taxonomic bias in favour of vertebrates in island ecological studies when compared to scientific publications as a whole. We discuss how such taxonomic bias may have arisen and discuss the implications for ecology and biogeography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号