首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA–RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called “zigzag” configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.  相似文献   

2.
3.
4.
The complete set of possible secondary structures of a variant Qβ RNA sequenced by Schaffner has been found using a computer program which allows G-U pairing as well as the usual Watson-Crick A-U and G-C pairing. Of special interest are those secondary structures with the highest double-strandedness. Omitting G-U pairing, we find the structure with the maximum double-strandedness has a pairing of 62% and exhibits a similarity to the clover leaf structure of tRNA. Including G-U pairing, the complementary strands of RNA are asymmetrical. We find maximum pairings of 71% for both the plus and minus strands. These structures also exhibit a cloverleaf structure. A similar analysis has been carried out for the secondary structure of a larger Qβ variant sequenced by Mills, Kramer and Spiegelman, but in this case there are a large number of secondary structures with the same maximum number of pairs and it is therefore not possible to select a unique structure with the maximum double-strandedness.  相似文献   

5.
6.
RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme.  相似文献   

7.
3′-deoxyadenosine triphosphate inhibited invitro [3H]UMP incorporation by RNA-dependent RNA polymerases from tobacco and cowpea plants. The inhibition of [3H]UMP incorporation could be reversed by simultaneous addition of higher ATP concentrations but not with increasing concentrations of UTP or when excess ATP was added 10 min after the inhibitor. These results suggest 3′-deoxyadenosine triphosphate competes specifically with ATP in reaction mixtures and results in premature termination of RNA synthesis invitro by RNA-dependent RNA polymerase.  相似文献   

8.
In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem–loops; HIV-1 TAR and adenovirus VAI-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA–protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.  相似文献   

9.
The report in 1971 by Comuet and Astier‐Manifacier that Chinese cabbage contains an active RNA‐dependent RNA polymerase has been extended to all plants studied. This has met with much opposition because the central dogma of molecular biology requires no replication mechanism for RNA. Only upon RNA virus infection are such enzymes needed, and it was generally believed that these were always and only virus‐coded. The purification and characterization of several of these plant viruses will be reviewed, with particular reference to the fact that while their amount in plant tissue is variably increased by various RNA virus infections their nature is unaffected by the viral genome and is strictly host‐specific. It will be noted, however, that in a specific instance viral infection has been shown to affect an important property of the enzyme. Also, it has become evident that certain plant viruses resemble animal picorna viruses (e.g., polio virus) and that these viruses carry an RNA polymerase gene. The same may be true, but has not been proven, for a small group of plant viruses that shows resemblances to the prokaryotic RNA phages in which a viral gene product together with host proteins form the RNA polymerase. An important question that remains to be solved in future work is the role of RNA polymerases in normal plant cell biology. Also, the mechanism by which viral infection causes the enzyme to become largely membrane or organelle bound and possibly conformationally changed in the process remains to be elucidated.  相似文献   

10.
We investigate the role of water molecules in 89 protein–RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein–RNA interfaces are hydrated less than protein–DNA interfaces, but more than protein–protein interfaces. Majority of the waters at protein–RNA interfaces makes multiple H-bonds; however, a fraction do not make any. Those making H-bonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein–DNA interfaces, mainly due to the presence of the 2′OH, the ribose in protein–RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein–RNA interfaces is hydrated more than the major groove, while in protein–DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein–RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein–RNA recognition and should be carefully treated while engineering protein–RNA interfaces.  相似文献   

11.
12.
13.
14.
15.
In this paper, we present the asymptotic enumeration of RNA structures with pseudoknots. We develop a general framework for the computation of exponential growth rate and the asymptotic expansion for the numbers of k-noncrossing RNA structures. Our results are based on the generating function for the number of k-noncrossing RNA pseudoknot structures, , derived in Bull. Math. Biol. (2008), where k−1 denotes the maximal size of sets of mutually intersecting bonds. We prove a functional equation for the generating function and obtain for k=2 and k=3, the analytic continuation and singular expansions, respectively. It is implicit in our results that for arbitrary k singular expansions exist and via transfer theorems of analytic combinatorics, we obtain asymptotic expression for the coefficients. We explicitly derive the asymptotic expressions for 2- and 3-noncrossing RNA structures. Our main result is the derivation of the formula .  相似文献   

16.
Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage ϕ29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33–35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation.  相似文献   

17.
The association between latex RNA and latex production was examined using MAK column chromatography techniques. In young untapped trees the introduction of tapping or the treatment of bark with growth regulators resulted in an increase of RNA level and of rRNA/tRNA ratio in the latex. In regularly tapped trees an increase in rRNA but not in tRNA was brought about by increasing the tapping frequency. Treatment with growth regulators had the same effect but essentially only through the related enhancement of latex export from latex vessels. During latex flow, the highest RNA level was registered in latex fractions originating from the most heavily drained areas of bark. Using32P labeling, evidence was obtained that the export of latex results in an enhancement of rRNA migration into the inner latex containing space of the vessels. This is considered as the reason of the generally observed association of high RNA level and of high rRNA/tRNA ratio with high latex yield. It is proposed that in controlling the RNA level and RNA proportions in the latex an important role is played by changes in turgor pressure associated with the loss of latex which may influence the export of RNA from the nucleus through related induction of pressure disequilibrium between the nucleoplasm and the latex cytoplasm.  相似文献   

18.
19.
The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ?29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号