首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Thirty inbred lines representing a wide range of early-maturing European elite germ plasm of maize (Zea mays L.) were assayed for RFLPs using 203 clone-enzyme combinations (106 DNA clones with restriction enzymes EcoR1 and HindIII). The genetic materials comprised 14 flint, 12 dent, and 4 lines of miscellaneous origin. Objectives were to (1) characterize the genetic diversity for RFLPs in these materials, (2) compare the level of genetic diversity found within and between the flint and the dent heterotic groups, and (3) examine the usefulness of RFLPs for assigning inbreds to heterotic groups. All but two DNA clones yielded polymorphism with at least one restriction enzyme. A total of 82 and 121 clone-enzyme combinations gave single-banded and multiple-banded RFLP patterns, respectively, with an average of 3.9 and 7.7 RFLP patterns per clone-enzyme combination across all 30 inbreds, respectively. Genetic similarity (GS) between lines, estimated from RFLP data as Dice's similarity coefficient, showed considerable variation (0.32 to 0.58) among unrelated inbreds. The mean GS for line combinations of type flint x dent (0.41) was significantly smaller than for unrelated flint lines (0.46) and dent lines (0.46), but there was considerable variation in GS estimates of individual line combinations within each group. Cluster and principal coordinate analyses based on GS values resulted in separate groupings of flint and dent lines in accordance with phylogenetic information. Positioning of lines of miscellaneous origin was generally consistent with expectations based on known breeding behavior and pedigrees. Results from this study corroborated that RFLP data can be used for assigning inbreds to heterotic groups and revealing pedigree relationships among inbreds.  相似文献   

2.
Characterization of genetic diversity is of great value to assist breeders in parental line selection and breeding system design. We screened 770 maize inbred lines with 1,034 single nucleotide polymorphism (SNP) markers and identified 449 high-quality markers with no germplasm-specific biasing effects. Pairwise comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), and Brazil (94), showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin. Temperate and tropical/subtropical germplasm clearly clustered into two separate groups. The temperate germplasm could be further divided into six groups consistent with known heterotic patterns. The greatest genetic divergence was observed between temperate and tropical/subtropical lines, followed by the divergence between yellow and white kernel lines, whereas the least divergence was observed between dent and flint lines. Long-term selection for hybrid performance has contributed to significant allele differentiation between heterotic groups at 20% of the SNP loci. There appeared to be substantial levels of genetic variation between different breeding pools as revealed by missing and unique alleles. Two SNPs developed from the same candidate gene were associated with the divergence between two opposite Chinese heterotic groups. Associated allele frequency change at two SNPs and their allele missing in Brazilian germplasm indicated a linkage disequilibrium block of 142 kb. These results confirm the power of SNP markers for diversity analysis and provide a feasible approach to unique allele discovery and use in maize breeding programs.  相似文献   

3.
The classification of maize inbred lines into heterotic groups is an important undertaking in hybrid breeding. The objectives of our research were to: (1) separate selected tropical mid-altitude maize inbred lines into heterotic groups based on grain yield data; (2) assess the genetic relationships among these inbred lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers; (3) examine the consistency between yield-based and marker-based groupings of the inbred lines. Thirty-eight tropical mid-altitude maize inbred lines were crossed to two inbred line testers representing the flint and dent heterotic pattern, respectively. The resulting testcrosses were evaluated in a trial at three locations for 2 years. Significant general combining ability (GCA) and specific combining ability (SCA) effects for grain yield were detected among the inbred lines. The tester inbred lines classified 23 of the 38 tested inbred lines into two heterotic groups based on SCA effects and testcross mean grain yields. This grouping was not related to endosperm type of the inbred lines. The outstanding performance of testcrosses of the remaining 15 inbred lines indicates the presence of significant genetic diversity that may allow the assignment of the lines into more than two heterotic groups. Diversity analysis of the 40 maize inbred lines using AFLP and SSR markers found high levels of genetic diversity among these lines and subdivided them into two main groups with subdivision into sub-groups consistent with breeding history, origin and parentage of the lines. However, heterotic groups formed using yield-based combining ability were different from the groups established on the basis of molecular markers. Considering the diversity of the genetic backgrounds of the mid-altitude inbred lines, the marker-based grouping may serve as the basis to design and carry out combining ability studies in the field to establish clearly defined heterotic groups with a greater genetic similarity within groups.Communicated by H.H. Geiger  相似文献   

4.
Information regarding diversity and relationships among breeding material is necessary for hybrid maize (Zea mays L.) breeding. Simple-sequence repeat (SSR) analysis of the 60 loci distributed uniformly throughout the maize genome was carried out for 65 inbred lines adapted to cold regions of Japan in order to assess genetic diversity among the inbred lines and to assign them to heterotic groups. The mean value (0.69) of the polymorphic-index content (PIC) for the SSR loci provided sufficient discrimination-ability for the assessment of genetic diversity among the inbred lines. The correlation between the genetic-similarity (GS) estimates and the coancestry coefficient was significant (r = 0.70). The average-linkage (UPGMA) cluster analysis and principal-coordinate analysis (PCOA) for a matrix of the GS estimates showed that the Northern flint inbred lines bred in Japan were similar to a Canadian Northern flint inbred line CO12 and a European flint inbred line F283, and that dent inbred lines bred in Japan were similar to BSSS inbred lines such as B73. These associations correspond to the known pedigree records of these inbred lines. The results indicate that SSR analysis is effective for the assessment of genetic diversity among maize inbred lines and for the assignment of inbred lines to heterotic groups.  相似文献   

5.
It has been claimed that the system that delivers the products of plant breeding reduces the diversity of cultivated varieties leading to an increased genetic vulnerability. The main goal of our study was to monitor the temporal trends in genetic diversity over the past five decades among maize cultivars with the largest acreage in Central Europe. Our objectives were to (1) investigate how much of the genetic diversity present in important adapted open-pollinated varieties (OPVs) has been captured in the elite flint germplasm pool, (2) examine changes in the genetic diversity among the most important commercial hybrids as well as in their dent and flint parents, (3) analyze temporal changes in allele frequencies between the dent and flint parental inbreds, and (4) investigate linkage disequilibrium (LD) trends between pairs of loci within the set of parental dent and flint lines. We examined 30 individuals of five prominent OPVs from Central Europe, 85 maize hybrids of economic importance, and their dent and flint parental components with 55 SSRs. LD was significant at probability level P=0.01 for 20.2% of the SSR marker pairs in the 82 dent lines and for 17.2% in the 66 flint lines. The dent and flint heterotic groups were clearly separated already at the beginning of hybrid breeding in Central Europe. Furthermore, the genetic variation within and among varieties decreased significantly during the five decades. The five OPVs contain numerous unique alleles that were absent in the elite flint pool. Consequently, OPVs could present useful sources for broadening the genetic base of elite maize breeding germplasm.  相似文献   

6.
Summary The objectives of this study were (1) to investigate genetic diversity for RFLPs in a set of important maize inbreds commonly used in Italian breeding programs, (2) to compare genetic similarities between unrelated lines from the same and different heterotic groups, and (3) to examine the potential of RFLPs for assigning maize inbreds to heterotic groups. Forty inbreds were analyzed for RFLPs with two restriction enzymes (EcoRI and HindIII) and 82 DNA clones uniformly distributed over the maize genome. Seventy clone-enzyme combinations gave single-banded RFLP patterns, and 79 gave multiple-banded RFLP patterns. The average number of RFLP patterns detected per clone-enzyme combination across all inbreds was 5.8. RFLP data revealed a wide range of genetic diversity within the two heterotic groups assayed, Iowa Stiff Stalk Synthetic (BSSS) and Lancaster Sure Crop (LSC). Genetic similarity (GS) between lines was estimated from binary RFLP data according to the method of Nei and Li (1979). The mean GS for line combinations of type BSSS × LSC (0.498) was substantially smaller than for unrelated line combinations or type BSSS × BSSS (0.584) but almost as great as for un-related line combinations of type LSC × LSC (0.506). Principal coordinate and cluster analyses based on GS values resulted in the separate groupings of lines, which is consistent with known pedigree information. A comparison between both methods for multivariate analyses of RFLP data is presented.  相似文献   

7.
Maize (Zea mays L.) breeders are concerned about the narrowing of the genetic base of elite germplasm. To reverse this trend, elite germplasm from other geographic regions can be introgressed, but due to lack of adaptation it is difficult to assess their breeding potential in the targeted environment. The objectives of this study were to (1) investigate the relationship between European and US maize germplasm, (2) examine the suitability of different mega-environments and measures of performance to assess the breeding potential of exotics, and (3) study the relationship of genetic distance with mid-parent heterosis (MPH). Eight European inbreds from the Dent and Flint heterotic groups, 11 US inbreds belonging to Stiff Stalk (SS), non-Stiff Stalk (NSS), and CIMMYT Pool 41, and their 88 factorial crosses in F1 and F2 generations were evaluated for grain yield and dry matter concentration. The experiments were conducted in three mega-environments: Central Europe (target mega-environment), US Cornbelt (mega-environment where donor lines were developed), and Southeast Europe (an intermediate mega-environment). The inbreds were also fingerprinted with 266 SSR markers. Suitable criteria to identify promising exotic germplasm were F1 hybrid performance in the targeted mega-environment and F1 and parental performance in the intermediate mega-environment. Marker-based genetic distances reflected relatedness among the inbreds, but showed no association with MPH. Based on genetic distance, MPH, and F1 performance, we suggest to introgress SS germplasm into European Dents and NSS into European Flints, in order to exploit the specific adaptation of European flint germplasm and the excellent combining ability of US germplasm in European maize breeding programs.  相似文献   

8.
Diversity among tropical maize inbred lines that compose breeding programs, is not well known. The lack of this information has made the arrangement of heterotic groups to be used for breeding purposes difficult. Methods of molecular analysis have been used as efficient alternatives for evaluating genetic diversity, aiming at heterotic group arrangement and acquisition of new hybrids. In this study, AFLP (amplified fragment length polymorphism) was used to investigate the genetic relationships among 96 tropical maize inbred lines from two different origins. The polymorphism level among the genotypes and the possibility of their allocation in heterotic groups were evaluated. Besides, correlations among genetic diversity and flowering time were analyzed. Nine primer combinations were used to obtain AFLP markers, producing 638 bands, 569 of which were polymorphic. Genetic similarities (GS), determined by Jaccard's similarity coefficient, varied from 0.345 to 0.891, with an average of 0.543. The dendrogram based on the GS and on the UPGMA cluster method did not separate the inbred lines in well-defined groups. Aiming at separating the lines into more accurate groups, Tocher's optimization procedure was carried out, 17 groups being identified. Association between flowering time and germplasm pools was detected. AFLP showed itself to be a robust assay, revealing a great power of detection of genetic variability in the tropical germplasm, and also demonstrated to be very useful for guiding breeding programs.  相似文献   

9.
Liu K  Goodman M  Muse S  Smith JS  Buckler E  Doebley J 《Genetics》2003,165(4):2117-2128
Two hundred and sixty maize inbred lines, representative of the genetic diversity among essentially all public lines of importance to temperate breeding and many important tropical and subtropical lines, were assayed for polymorphism at 94 microsatellite loci. The 2039 alleles identified served as raw data for estimating genetic structure and diversity. A model-based clustering analysis placed the inbred lines in five clusters that correspond to major breeding groups plus a set of lines showing evidence of mixed origins. A "phylogenetic" tree was constructed to further assess the genetic structure of maize inbreds, showing good agreement with the pedigree information and the cluster analysis. Tropical and subtropical inbreds possess a greater number of alleles and greater gene diversity than their temperate counterparts. The temperate Stiff Stalk lines are on average the most divergent from all other inbred groups. Comparison of diversity in equivalent samples of inbreds and open-pollinated landraces revealed that maize inbreds capture <80% of the alleles in the landraces, suggesting that landraces can provide additional genetic diversity for maize breeding. The contributions of four different segments of the landrace gene pool to each inbred group's gene pool were estimated using a novel likelihood-based model. The estimates are largely consistent with known histories of the inbreds and indicate that tropical highland germplasm is poorly represented in maize inbreds. Core sets of inbreds that capture maximal allelic richness were defined. These or similar core sets can be used for a variety of genetic applications in maize.  相似文献   

10.
Recent advances in high-throughput sequencing technologies have triggered a shift toward single-nucleotide polymorphism (SNP) markers. A systematic bias can be introduced if SNPs are ascertained in a small panel of genotypes and then used for characterizing a larger population (ascertainment bias). With the objective of evaluating a potential ascertainment bias of the Illumina MaizeSNP50 array with respect to elite European maize dent and flint inbred lines, we compared the genetic diversity among these materials based on 731 amplified fragment length polymorphisms (AFLPs), 186 simple sequence repeats (SSRs), 41,434 SNPs of the MaizeSNP50 array (SNP-A), and two subsets of it, i.e., 30,068 Panzea (SNP-P) and 11,366 Syngenta markers (SNP-S). We evaluated the bias effects on major allele frequency, allele number, gene diversity, modified Roger’s distance (MRD), and on molecular variance (AMOVA). We revealed ascertainment bias in SNP-A, compared to AFLPs and SSRs. It affected especially European flint lines analyzed with markers (SNP-S) specifically developed to maximize differences among North American dent germplasm. The bias affected all genetic parameters, but did not substantially alter the relative distances between inbred lines within groups. For these reasons, we conclude that the SNP markers of the MaizeSNP50 array can be employed for breeding purposes in the investigated material. However, attention should be paid in case of comparisons between genotypes belonging to different heterotic groups. In this case, it is advisable to prefer a marker subset with potentially low ascertainment bias, like in our case the SNP-P marker set.  相似文献   

11.
Information about the extent and genomic distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. The main objectives of this study were to (1) investigate genetic diversity within germplasm groups of elite European maize (Zea mays L.) inbred lines, (2) examine the population structure of elite European maize germplasm, and (3) determine the extent and genomic distribution of LD between pairs of simple sequence repeat (SSR) markers. We examined genetic diversity and LD in a cross section of European and US elite breeding material comprising 147 inbred lines genotyped with 100 SSR markers. For gene diversity within each group, significant (P<0.05) differences existed among the groups. The LD was significant (P<0.05) for 49% of the SSR marker pairs in the 80 flint lines and for 56% of the SSR marker pairs in the 57 dent lines. The ratio of linked to unlinked loci in LD was 1.1 for both germplasm groups. The high incidence of LD suggests that the extent of LD between SSR markers should allow the detection of marker-phenotype associations in a genome scan. However, our results also indicate that a high proportion of the observed LD is generated by forces, such as relatedness, population stratification, and genetic drift, which cause a high risk of detecting false positives in association mapping.  相似文献   

12.

Key message

Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs.

Abstract

Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees–Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees–Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.
  相似文献   

13.
The efficiency of marker-assisted prediction of phenotypes has been studied intensively for different types of plant breeding populations. However, one remaining question is how to incorporate and counterbalance information from biparental and multiparental populations into model training for genome-wide prediction. To address this question, we evaluated testcross performance of 1652 doubled-haploid maize (Zea mays L.) lines that were genotyped with 56,110 single nucleotide polymorphism markers and phenotyped for five agronomic traits in four to six European environments. The lines are arranged in two diverse half-sib panels representing two major European heterotic germplasm pools. The data set contains 10 related biparental dent families and 11 related biparental flint families generated from crosses of maize lines important for European maize breeding. With this new data set we analyzed genome-based best linear unbiased prediction in different validation schemes and compositions of estimation and test sets. Further, we theoretically and empirically investigated marker linkage phases across multiparental populations. In general, predictive abilities similar to or higher than those within biparental families could be achieved by combining several half-sib families in the estimation set. For the majority of families, 375 half-sib lines in the estimation set were sufficient to reach the same predictive performance of biomass yield as an estimation set of 50 full-sib lines. In contrast, prediction across heterotic pools was not possible for most cases. Our findings are important for experimental design in genome-based prediction as they provide guidelines for the genetic structure and required sample size of data sets used for model training.  相似文献   

14.
玉米重要自交系的肿囊腐霉茎腐病抗性鉴定与评价   总被引:5,自引:0,他引:5  
由肿囊腐霉菌(Pythium inflatum Matthews)引起的玉米茎腐病是影响玉米产量的一种重要病害。为进一步拓展可利用的抗源,于2010-2011年在田间采用人工接种方法对287份重要的玉米自交系种质进行了玉米茎腐病的抗性鉴定评价。结果表明,287份鉴定材料中有171份自交系对茎腐病的抗性达到中抗以上水平,占鉴定材料的59.58%,其中高抗自交系共43份,占鉴定材料总数的14.98%;感病类型自交系共116份,占鉴定材料的40.42%,其中高感自交系共95份,占鉴定材料总数的33.10%。Lancaster、Reid及P群种质中具有丰富的茎腐病抗源,而塘四平头种质群中茎腐病抗源相对缺乏,多为感病类型。该研究结果可为今后我国玉米茎腐病抗性种质的引进和改良提供重要参考。  相似文献   

15.
Use of SSRs for establishing heterotic groups in subtropical maize   总被引:10,自引:0,他引:10  
Heterotic groups and patterns are of fundamental importance in hybrid breeding. The objectives of our research were to: (1) investigate the relationship of simple sequence repeats (SSR) based genetic distances between populations and panmictic midparent heterosis (PMPH) in a broad range of CIMMYT maize germplasm, (2) evaluate the usefulness of SSR markers for defining heterotic groups and patterns in subtropical germplasm, and (3) examine applications of SSR markers for broadening heterotic groups by systematic introgression of other germplasm. Published data of two diallels and one factorial evaluated for grain yield were re-analyzed to calculate the PMPH in population hybrids. Additionally, 20 pools and populations widely used in CIMMYT's breeding program were assayed with 83 SSR markers covering the entire maize genome. Correlations of squared modified Roger's distance (MRD2) and PMPH were mostly positive and significant, but adaption problems caused deviations in some cases. For intermediate- and early-maturity subtropical germplasm, two heterotic groups could be suggested consisting of a flint and dent composite. We concluded that the relationships between the populations obtained by SSR analyses are in excellent agreement with pedigree information. SSR markers are a valuable complementation to field trials for identifying heterotic groups and can be used to introgress exotic germplasm systematically.Communicated by F. Salamini  相似文献   

16.
Summary Isozymes and restriction fragment length polymorphisms (RFLPs) have been proposed for use in varietal identification and selection for agronomic traits. Although the use of isozymes for these purposes has been well documented, evaluation of the efficacy of RFLP technology as applied to crop improvement is far from complete. This investigation was conducted to study the relationship between RFLP-derived genotypes and heterotic patterns of a group of maize (Zea mays L.) inbred lines. A total of 22 inbreds was crossed to four testers (B73, B76, Mo17, and Va26) in combinations that minimized crossing within heterotic groups. Forty-seven single-cross progeny were subsequently evaluated for several agronomic traits (including grain yield and moisture, ear height, and root lodging) over 2–4 consecutive years at two to four Iowa locations in a randomized complete-block design. The inbred lines were subjected to RFLP analysis, which involved 47 genomic clones and the restriction enzymes EcoRI and HindIII. Hybrid RFLP patterns were predicted from their inbred parents. Modified Roger's distances were computed to estimate genetic distance among the inbred lines. Principal component analysis facilitated ascertainment of relative dispersion of the inbreds based on the frequency of variants at specific RFLP loci. Evident associations of variants with genes affecting agronomic traits were identified by principal component regression analysis, in which adjusted hybrid means were regressed on the matrix of hybrid variants frequencies. The hybrid means were adjusted by removing environmental effects, using residuals as dependent variables in the regression analysis. Results from this study suggest that RFLP analysis may be of value in allocating maize inbreds to heterotic groups, but no relationship between RFLP-based genetic distance and hybrid performance was apparent. Principal component regression identified variants potentially linked to genes that control specific agronomic traits.Joint contribution: USDA-ARS and Journal Paper No. J-13590 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA. Projects No. 2818 and 2778  相似文献   

17.
Striga-resistant maize inbred lines are of interest to maize breeding programs in the savannas of Africa where the parasitic weed is endemic and causes severe yield losses in tropical maize. Assessment of the genetic diversity of such inbred lines is useful for their systematic and efficient use in a breeding program. Diversity analysis of 41 Striga-resistant maize inbred lines was conducted using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers to examine the genetic relationships among these lines and to determine the level of genetic diversity that exists within and between their source populations. The two marker systems generated 262 and 101 polymorphic fragments, respectively. Genetic similarity (GS) values among all possible pairs of inbred lines varied from 0.45 to 0.95, with a mean of 0.61±0.002 for AFLPs, and from 0.21 to 0.92, with a mean of 0.48±0.003, for SSRs. The inbred lines from each source population exhibited a broad range of GS values with the two types of markers. Both AFLPs and SSRs revealed similar levels of within population genetic variation for all source populations. Cluster and principal component analysis of GS estimates with the two markers revealed clear differentiation of the Striga-resistant inbred lines into groups according to their source populations. There was clear separation between early- and late-maturing Striga-resistant inbred lines. Considering the paucity of germplasm with good levels of resistance to Striga in maize, the broad genetic diversity detected within and among source populations demonstrates the genetic potential that exists to improve maize for resistance to Striga.  相似文献   

18.
Genetic similarities of 13 inbred lines of maize (Zea mays L.) were analyzed by restriction fragment length polymorphisms (RFLPs). The objectives of the study were to detect genetic similarities among 13 inbreds and to assign them to heterotic groups. By means of 24 probe-enzyme combinations (PECs) selected for locus specificity, clear patterns and reproducibility, 85 alleles were found with an average of 3.3 alleles per locus. The allelic frequency data were used to estimate genetic similarities among lines, and as a result the diversity index of 0.499 was obtained. Genetic similarities between the pairs of 13 lines ranged from 0.523 up to 0.802 with an average of 0.649. The UPGMA clustering algorithm analysis classified the 13 lines into five groups, which generally corresponded to known maize heterotic groups based on pedigree information. The authors concluded that RFLP-based markers could be used for investigating genetic relationships between maize inbred lines and assigning them to heterotic groups, but it seemed that a large number of PECs were needed to obtain reliable estimates of genetic similarity.  相似文献   

19.
玉米自交系遗传变异的RFLP分析   总被引:10,自引:0,他引:10  
利用RFLP标记研究了13个玉米(Zca nays L.)自交系的遗传变异。从30对探针/酶组合中筛选出杂交带型清晰、稳定、重复性好的24对组合,在13个自交系中获得85个等位基因杂交片段,平均每个位点为3.3条,平均多态性指数为0.499。13个自交系之间的遗传相似系数为0.523-0.802,平均为0.649。UPGMA聚类分析表明,供试自交系共分为5个类群,分群结果与其系谱关系基本吻合;表明  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号