首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Genetic instability in human mismatch repair deficient cancers   总被引:7,自引:0,他引:7  
Cancers showing microsatellite instability (MSI-H) are frequent tumors characterized by inactivating alterations of mismatch repair (MMR) genes that lead to an incapacity to recognize and repair errors that occur during DNA replication. These cancers can be inherited as in the human non-polyposis colorectal cancer syndrome, or can occur sporadically in 10-15% of colorectal, gastric and endometrial cancers. MSI-H tumors have different clinicopathological features compared to cancers without this phenotype, termed MSS, and the repertoire of genetic events involved in tumoral progression of both phenotypes is thought to be different. In MSI-H tumors, most of the genetic changes occur at both non-coding and coding microsatellites that are particularly prone to errors during replication due to their repetitive sequence. This mechanism appears to be the main "genetic pathway" by which functional changes with putative oncogenic effects are accumulated in these tumors.  相似文献   

2.
DNA mismatch repair defects: role in colorectal carcinogenesis   总被引:25,自引:0,他引:25  
Jacob S  Praz F 《Biochimie》2002,84(1):27-47
The inactivation of the DNA mismah repair (MMR) system, which is associated with the predisposition to the hereditary non-polyposis colorectal cancer (HNPCC), has also been documented in nearly 20% of the sporadic colorectal cancers. These tumors are characterized by a high frequency of microsatellite instability (MSI(+) phenotype), resulting from the accumulation of small insertions or deletions that frequently arise during replication of these short repeated sequences. A germline mutation of one of the two major MMR genes (hMSH2 or hMLH1) is found in half to two-thirds of the patients with HNPCC, whereas in sporadic cases hypermethylation of the hMLH1 promoter is the major cause of the MMR defect. Germline mutations in hMSH6 are rare and rather confer predisposition to late-onset familial colorectal cancer, and frequent extracolonic tumors. Yet, the genetic background of a number of HNPCC patients remains unexplained, indicating that other genes participate in MMR and play important roles in cancer susceptibility. The tumor-suppressor genes that are potential targets for the MSI-driven mutations because they contain hypermutable repeated sequences are likely to contribute to the etiology and tissue specificity of the MSI-associated carcinogenesis. Because the prognosis and the chemosensitivity of the MSI(+) colorectal tumors differ from those without instability, the determination of the MSI phenotype is expected to improve the clinical management of patients. This review gives an overview of various aspects of the biochemistry and genetics of the DNA mismah repair system, with particular emphasis in its role in colorectal carcinogenesis.  相似文献   

3.
Some common human tumors are characterized by inactivating alterations of mismatch repair (MMR) genes that lead to an inability to recognize and repair errors that occur during DNA replication. These alterations are either inherited in the so-called hereditary non polyposis colorectal cancer (HNPCC) syndrome or can occur sporadically in 10-15% of colorectal, gastric, or endometrial tumors. Because of their repetitive nature, microsatellite sequences are particularly prone to mutation in tumors with MMR deficiency. Thousands of microsatellite alterations accumulate in MMR deficient cancers and these are referred to as MSI-H tumors (high level of microsatellite instability). MSI-H tumors have different clinicopathological features compared to cancers without this phenotype, and the repertoire of genetic events involved in their tumoral progression is also thought to be different. Many of the genetic alterations observed in MSI-H tumors affect nucleotide repeat tracks contained within genes thought to have a putative oncogenic function. These alterations are believed to play an important role during MSI-H carcinogenesis, since they can be either inactivating or activating events that are selected for in a recessive or dominant manner. We provide here an overview of the genetic changes that occur in MSI-H tumors and that appear to constitute a new genetic mutator pathway leading a normal cell to become malignant.  相似文献   

4.
Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two complexes as follows: one consisting of hMSH2, hMSH6, hMLH1, and hPMS2 and the other consisting of hMSH2, hMSH6, hMLH1, and hPMS1. These interactions occur without the addition of ATP. Furthermore, the protein complexes specifically bind to mismatched DNA and not to a similar homoduplex oligonucleotide. The protein complex-DNA interactions occur primarily through hMSH6, although hMSH2 can also become cross-linked to the mismatched substrate when not participating in the MMR protein complex. In the presence of ATP the binding of hMSH6 to mismatched DNA is decreased. In addition, hMLH1, hPMS2, and hPMS1 no longer interact with each other or with the hMutSalpha complex (hMSH2 and hMSH6). However, the ability of hMLH1 to co-immunoprecipitate mismatched DNA increases in the presence of ATP. This interaction is dependent on the presence of the mismatch and does not appear to involve a direct binding of hMLH1 to the DNA.  相似文献   

5.
Mismatch repair defects in cancer   总被引:23,自引:0,他引:23  
Post-replicative mismatch repair in humans utilises the hMSH2, hMSH6, hMSH3, hMLH1 and hPMS2 genes and possibly the newly identified hMLH3 gene. Recently, a link has been established between hMSH6 mutations and 'atypical' hereditary non-polyposis colon cancer (HNPCC) with an increased incidence of endometrial cancers. To satisfy the need for a diagnostic test capable of differentiating between pathogenic mutations and polymorphisms, several functional assays that fulfil these criteria have been described. These should allow for better diagnosis of HNPCC.  相似文献   

6.
The evolutionary conserved mismatch repair proteins correct a wide range of DNA replication errors. Their importance as guardians of genetic integrity is reflected by the tremendous decrease of replication fidelity (two to three orders of magnitude) conferred by their loss. Germline mutations in mismatch repair genes, predominantly MSH2 and MLH1, have been found to underlie the Lynch syndrome (also called hereditary non-polyposis colorectal cancer, HNPCC), a hereditary predisposition for cancer. Lynch syndrome affects predominantly the colon and accounts for 2–5% of all colon cancer cases. During more than 30 years of biochemical, crystallographic and clinical research, deep insight has been achieved in the function of mismatch repair and the diseases that are associated with its loss. We review the biochemistry of mismatch repair and also introduce the clinical, diagnostic and genetic aspects of Lynch syndrome.  相似文献   

7.
The cellular DNA mismatch repair (MMR) pathway, involving the DNA mismatch repair genes MLH1 and MSH2, detects and repairs DNA replication errors. Defects in MSH2 and MLH1 account for most cases of hereditary non-polyposis colorectal cancer as well as for sporadic colorectal tumors. Additionally, increased expression of MSH2 RNA and/or protein has been reported in various malignancies. Loss of DNA MMR in mammalian cells has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. Due to other functions besides its role in DNA repair, that include regulation of cell proliferation and apoptosis, MSH2 has recently been shown to be of importance for pathogenesis and progression of cancer. This review summarizes our present understanding of the function of MSH2 for DNA repair, cell cycle control, and apoptosis and discusses its importance for pathogenesis, progression and therapy of cancer.  相似文献   

8.
Hereditary non-polyposis colorectal cancer (HNPCC) is a clinical syndrome characterised by an inherited predisposition to early onset colorectal and uterine cancers and an increased incidence of other cancers. It is caused by germline defects in the human mismatch repair genes. Defects in two of the known mismatch repair genes (namely hMSH2 and hMLH1) account for over 90% of mutations found in HNPCC families. In this study we have identified 14 families that fulfilled the clinical criteria for HNPCC and screened the hMSH2 and hMLH1 genes for germline mutations using single-strand conformational polymorphism (SSCP) analysis and DNA sequencing. Seven mutations were identified. Of these, there were five frameshifts, one missense mutation and a further novel mutation that involved separate transition and transversion changes in successive amino acid residues. Three of the mutations were in hMSH2 and four in hMLH1. The identification of germ-line mutations in an HNPCC family enables targeted surveillance and the possibility of early curative intervention. SSCP is a simple and effective method for identifying most mutations in the human mismatch repair genes using DNA from fresh, frozen or archival material. Received: 24 July 1996 / Revised: 26 September 1996  相似文献   

9.
Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevated spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into DNA and suppresing the occurrence of spontaneous AT-->CG transversions. Most of the bacterial mutator genes appeared to be evolutionarily conserved, and scientists were continuously searching for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a human MutT homologue--hMTH1 protein--was found to be overexpressed rather than inactivated in many human diseases, including cancer. The interest in DNA repair contribution to human diseases exploded with the observation that germline mutations in mismatch repair (MMR) genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continuously growing knowledge about DNA repair we still do not fully understand how the mutator phenotype contributes to specific forms of human diseases.  相似文献   

10.
Mutations in human DNA polymerase (Pol) ?, one of three eukaryotic Pols required for DNA replication, have recently been found associated with an ultramutator phenotype in tumors from somatic colorectal and endometrial cancers and in a familial colorectal cancer. Possibly, Pol ? mutations reduce the accuracy of DNA synthesis, thereby increasing the mutational burden and contributing to tumor development. To test this possibility in vivo, we characterized an active site mutant allele of human Pol ? that exhibits a strong mutator phenotype in vitro when the proofreading exonuclease activity of the enzyme is inactive. This mutant has a strong bias toward mispairs opposite template pyrimidine bases, particularly T•dTTP mispairs. Expression of mutant Pol ? in human cells lacking functional mismatch repair caused an increase in mutation rate primarily due to T•dTTP mispairs. Functional mismatch repair eliminated the increased mutagenesis. The results indicate that the mutant Pol ? causes replication errors in vivo, and is at least partially dominant over the endogenous, wild type Pol ?. Since tumors from familial and somatic colorectal patients arise with Pol ? mutations in a single allele, are microsatellite stable and have a large increase in base pair substitutions, our data are consistent with a Pol ? mutation requiring additional factors to promote tumor development.  相似文献   

11.
Missense mutations in hMLH1 associated with colorectal cancer   总被引:3,自引:0,他引:3  
One of the most prevalent hereditary syndromes associated with colorectal cancer is hereditary nonpolyposis colorectal cancer (HNPCC). The inherited gene defects in HNPCC have been shown to reside in DNA mismatch repair genes, mostly hMSH2 or hMLH1. Most HNPCC patients are heterozygous with regard to the relevant mismatch repair gene; they have one normal and one mutated allele, and mismatch repair in normal somatic cells is functional. Cancer predisposition in HNPCC is believed to be associated with the loss of the wild-type allele in somatic cells, resulting in defective DNA mismatch repair. This gives rise to DNA microsatellite instability (MSI), an increased somatic mutation rate, and eventually, to the accumulation of mutations in genes involved in colorectal carcinogenesis. In support of this theory, colorectal tumors in HNPCC patients and in mice deficient for hMSH2 or hMLH1 show MSI. Here, we describe two missense mutations in hMLH1 exon 16 associated with colorectal cancer. Interestingly, the tumors do not show MSI. This raises some potentially important issues. First, even microsatellite-negative colorectal tumors can be associated with germline mutations and these will be missed if an MSI test is used to select patients for mutation screening. Second, the lack of MSI in these cases suggests that the mechanism involved in carcinogenesis could be different from that generally hypothesized.  相似文献   

12.
Defects in mismatch repair (MMR) genes result in a mutator phenotype by inducing microsatellite instability (MI), a characteristic of hereditary nonpolyposis colorectal cancers (HNPCC) and a subset of sporadic colon tumors. Present models describing the mechanism by which germ line mutations in MMR genes predispose kindreds to HNPCC suggest a “two-hit” inactivation of both alleles of a particular MMR gene. Here we present experimental evidence that a nonsense mutation at codon 134 of the hPMS2 gene is sufficient to reduce MMR and induce MI in cells containing a wild-type hPMS2 allele. These results have significant implications for understanding the relationship between mutagenesis and carcinogenesis and the ability to generate mammalian cells with mutator phenotypes.  相似文献   

13.
Functional & Integrative Genomics - About half of hereditary non-polyposis colorectal cancers (HNPCCs) fulfilling the Amsterdam criteria (AC) do not display evidence of mismatch repair defects,...  相似文献   

14.
Replication errors: cha(lle)nging the genome.   总被引:19,自引:1,他引:18       下载免费PDF全文
J Jiricny 《The EMBO journal》1998,17(22):6427-6436
  相似文献   

15.
The DNA repair pathway mismatch repair (MMR) is responsible for the recognition and correction of DNA biosynthetic errors caused by inaccurate nucleotide incorporation during replication. Faulty MMR leads to failure to address the mispairs or insertion deletion loops (IDLs) left behind by the replicative polymerases and results in increased mutation load at the genome. The realization that defective MMR leads to a hypermutation phenotype and increased risk of tumorigenesis highlights the relevance of this pathway for human disease. The association of MMR defects with increased risk of cancer development was first observed in colorectal cancer patients that carried inactivating germline mutations in MMR genes and the disease was named as hereditary non-polyposis colorectal cancer (HNPCC). Currently, a growing list of cancers is found to be MMR defective and HNPCC has been renamed Lynch syndrome (LS) partly to include the associated risk of developing extra-colonic cancers. In addition, a number of non-hereditary, mostly epigenetic, alterations of MMR genes have been described in sporadic tumors. Besides conferring a strong cancer predisposition, genetic or epigenetic inactivation of MMR genes also renders cells resistant to some chemotherapeutic agents. Therefore, diagnosis of MMR deficiency has important implications for the management of the patients, the surveillance of their relatives in the case of LS and for the choice of treatment. Some of the alterations found in MMR genes have already been well defined and their pathogenicity assessed. Despite this substantial wealth of knowledge, the effects of a large number of alterations remain uncharacterized (variants of uncertain significance, VUSs). The advent of personalized genomics is likely to increase the list of VUSs found in MMR genes and anticipates the need of diagnostic tools for rapid assessment of their pathogenicity. This review describes current tools and future strategies for addressing the relevance of MMR gene alterations in human disease.  相似文献   

16.
Microsatellite instability (MSI) is recognised as genome-wide alterations in repetitive DNA sequences caused by defects in the DNA mismatch repair machinery. Such mutation patterns have been found in almost all analysed malignancies from patients with hereditary non-polyposis colorectal cancer, and in approximately 15% of sporadic colorectal cancers. In cancers with the MSI phenotype, microsatellite-like sequences in coding regions of various cancer-related genes, including transforming growth factor beta receptor type II (TGF betaRII), are targets for mutations. The TGF betaRII gene harbours a 10-bp polyadenine tract, and mutations within this region are found in 90% of colorectal cancers with MSI. The frameshift mutations result in new amino acid sequences in the C-terminal part of the proteins, prematurely terminating where a novel stop codon appears. In this study we have defined new cytotoxic T lymphocyte (CTL) epitope (RLSSCVPVA), carrying a good HLA-A*0201 binding motif, and resulting from the most common frameshift mutation in TGF betaRII. A CTL line and several CTL clones were generated from an HLA-A2+ normal donor by repeated stimulation of T cells with dendritic cells pulsed with the peptide. One of the CTL clones was able to kill an HLA-A2+ colon cancer cell line harbouring mutant TGF betaRII. This epitope may be a valuable component in cancer vaccines directed at MSI-positive carcinomas.  相似文献   

17.
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by mutations in one of at least four different DNA mismatch repair genes, hMLH1, hMSH2, hPMS1, and hPMS2. Phenotypically, HNPCC is characterized by the early onset of colorectal cancers and various extracolonic cancers. Depending on the presence or absence of extracolonic tumors, HNPCG-has been divided into two syndromes (Lynch syndrome I and Lynch syndrome II), but, so far, no correlation to distinct genotypes has been demonstrated. In this study, we present a frequent hMLH1 intron 14 founder mutation that is associated with a highly reduced frequency of extracolonic tumors. The mutation disrupts the splice donor site and silences the mutated allele. Tumors exhibited microsatellite instability, and loss of the wild-type hMLH1 allele was prevalent. We propose that the mutation results in a milder phenotype, because the mutated hMLH1 protein is prevented from exerting a dominant negative effect on the concerted action of the mismatch repair system.  相似文献   

18.
Tumorigenesis can be viewed as an imbalance between the mechanisms of cell-cycle control and mutation rates within the genes. Genomic instability is broadly classified into microsatellite instability (MIN) associated with mutator phenotype, and chromosome instability (CIN) recognized by gross chromosomal abnormalities. Three intracellular mechanisms are involved in DNA damage repair that leads to mutator phenotype. They include the nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). The CIN pathway is typically associated with the accumulation of mutations in tumor suppressor genes and oncogenes. Defects in DNA MMR and CIN pathways are responsible for a variety of hereditary cancer predisposition syndromes including hereditary non-polyposis colorectal carcinoma (HNPCC), Bloom syndrome, ataxia-telangiectasia, and Fanconi anaemia. While there are many genetic contributors to CIN and MIN, there are also epigenetic factors that have emerged to be equally damaging to cell-cycle control. Hypermethylation of tumor suppressor and DNA MMR gene promoter regions, is an epigenetic mechanism of gene silencing that contributes to tumorigenesis. Telomere shortening has been shown to increase genetic instability and tumor formation in mice, underscoring the importance of telomere length and telomerase activity in maintaining genomic integrity. Mouse models have provided important insights for discovering critical pathways in the progression to cancer, as well as to elucidate cross talk among different pathways. This review examines various molecular mechanisms of genomic instability and their relevance to cancer.  相似文献   

19.
The primary role of mismatch repair (MMR) is to maintain genomic stability by removing replication errors from DNA. This repair pathway was originally implicated in human cancer through an association between microsatellite instability in colorectal tumors in hereditary nonpolyposis colon cancer (HNPCC) kindreds. Microsatellites are short repetitive sequences which are often copied incorrectly by DNA polymerases because the template and daughter strands in these regions are particularly prone to misalignment. These replication-dependent events create loops of extrahelical bases which would produce frameshift mutations unless reversed by MMR. One consequence of MMR loss is a widespread expansion and contraction of these repeated sequences that affects the whole genome. Defective MMR is therefore associated with a mutator phenotype. Since the same pathway is also responsible for repairing base:base mismatches, defective cells also experience large increases in the frequency of spontaneous transition and transversion mutations. Three different approaches have been used to investigate the function of individual components of the MMR pathway. The first is based on the biochemical characterization of the purified protein complexes using synthetic DNA substrates containing loops or single mismatches. In the second, the biological consequences of MMR loss are inferred from the phenotype of cell lines established from repair-deficient human tumors, from tolerant cells or from mice defective in single MMR genes. In particular, molecular analysis of the mutations in endogenous or reporter genes helped to identify the DNA substrates for MMR. Finally, mice bearing single inactive MMR genes have helped to define the involvement of MMR in cancer prevention.  相似文献   

20.
Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands. Human MYH is physically associated with hMSH2/hMSH6 via the hMSH6 subunit. The interaction of hMutSalpha and hMYH is not observed in several mismatch repair-defective cell lines. The hMutSalpha binding site is mapped to amino acid residues 232-254 of hMYH, a region conserved in the MutY family. Moreover, the binding and glycosylase activities of hMYH with an A/7,8-dihydro-8-oxo-deoxyguanine mismatch are enhanced by hMutSalpha. These results suggest that protein-protein interactions may be a means by which hMYH repair and mismatch repair cooperate in reducing replicative errors caused by oxidized bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号