首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater habitats make up only ~0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time‐calibrated phylogeny and a state‐dependent speciation–extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state‐dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage‐through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase.  相似文献   

2.
The major branches of life diversified in the marine realm, and numerous taxa have since transitioned between marine and freshwaters. Previous studies have demonstrated higher rates of molecular evolution in crustaceans inhabiting continental saline habitats as compared with freshwaters, but it is unclear whether this trend is pervasive or whether it applies to the marine environment. We employ the phylogenetic comparative method to investigate relative molecular evolutionary rates between 148 pairs of marine or continental saline versus freshwater lineages representing disparate eukaryote groups, including bony fish, elasmobranchs, cetaceans, crustaceans, mollusks, annelids, algae, and other eukaryotes, using available protein‐coding and noncoding genes. Overall, we observed no consistent pattern in nucleotide substitution rates linked to habitat across all genes and taxa. However, we observed some trends of higher evolutionary rates within protein‐coding genes in freshwater taxa—the comparisons mainly involving bony fish—compared with their marine relatives. The results suggest no systematic differences in substitution rate between marine and freshwater organisms.  相似文献   

3.
Many clades that span the marine–freshwater boundary are disproportionately more diverse in the younger, shorter lived, and scarcer freshwater environments than they are in the marine realm. This disparity is thought to be related to differences in diversification rates between marine and freshwater lineages. However, marine and freshwaters are not ecologically homogeneous, so the study of diversification across the salinity divide should also account for other potentially interacting variables. In diatoms, freshwater and substrate‐associated (benthic) lineages are several‐fold more diverse than their marine and suspended (planktonic) counterparts. These imbalances provide an excellent system to understand whether these variables interact with diversification. Using multistate hidden‐state speciation and extinction models, we found that freshwater lineages diversify faster than marine lineages regardless of whether they inhabit the plankton or the benthos. Freshwater lineages also had higher turnover rates (speciation + extinction), suggesting that habitat transitions impact speciation and extinction rates jointly. The plankton–benthos contrast was also consistent with state‐dependent diversification, but with modest differences in diversification and turnover rates. Asymmetric and bidirectional transitions rejected hypotheses about the plankton and freshwaters as absorbing, inescapable habitats. Our results further suggest that the high turnover rate of freshwater diatoms is related to high turnover of freshwater systems themselves.  相似文献   

4.
Species richness in freshwater bony fishes depends on two main processes: the transition into and the diversification within freshwater habitats. In contrast to bony fishes, only few cartilaginous fishes, mostly stingrays (Myliobatoidei), were able to colonize fresh water. Respective transition processes have been mainly assessed from a physiological and morphological perspective, indicating that the freshwater lifestyle is strongly limited by the ability to perform osmoregulatory adaptations. However, the transition history and the effect of physiological constraints on the diversification in stingrays remain poorly understood. Herein, we estimated the geographic pathways of freshwater colonization and inferred the mode of habitat transitions. Further, we assessed habitat‐related speciation rates in a time‐calibrated phylogenetic framework to understand factors driving the transition of stingrays into and the diversification within fresh water. Using South American and Southeast Asian freshwater taxa as model organisms, we found one independent freshwater colonization event by stingrays in South America and at least three in Southeast Asia. We revealed that vicariant processes most likely caused freshwater transition during the time of major marine incursions. The habitat transition rates indicate that brackish water species switch preferably back into marine than forth into freshwater habitats. Moreover, our results showed significantly lower diversification rates in brackish water lineages, whereas freshwater and marine lineages exhibit similar rates. Thus, brackish water habitats may have functioned as evolutionary bottlenecks for the colonization of fresh water by stingrays, probably because of the higher variability of environmental conditions in brackish water.  相似文献   

5.
Caves are perceived as isolated, extreme habitats with a uniquely specialized biota, which long ago led to the idea that caves are “evolutionary dead‐ends.” This implies that cave‐adapted taxa may be doomed for extinction before they can diversify or transition to a more stable state. However, this hypothesis has not been explicitly tested in a phylogenetic framework with multiple independently evolved cave‐dwelling groups. Here, we use the freshwater crayfish, a group with dozens of cave‐dwelling species in multiple lineages, as a system to test this hypothesis. We consider historical patterns of lineage diversification and habitat transition as well as current patterns of geographic range size. We find that while cave‐dwelling lineages have small relative range sizes and rarely transition back to the surface, they exhibit remarkably similar diversification patterns to those of other habitat types and appear to be able to maintain a diversity of lineages through time. This suggests that cave adaptation is not a “dead‐end” for freshwater crayfish, which has positive implications for our understanding of biodiversity and conservation in cave habitats.  相似文献   

6.
Adaptive radiations are typically triggered when a lineage encounters a significant range of open niche space (ecological opportunity), stemming from colonisation of new areas, extinction of competitors or key innovations. The most well-known of these is the colonisation of new areas, through either dispersal into new regions or the invasion of novel ecological regimes. One aspect of ecological opportunity that has rarely been studied, however, is the extent to which pre-existent competitors act to limit diversification in newly colonised adaptive zones. Herein, we show that in multiple geographically independent invasions of freshwaters by marine Sea Catfishes (Ariidae), rates of both morphological disparification and lineage diversification are inversely related to the presence and diversity of other freshwater fish lineages. Only in one region (Australia-New Guinea) with an otherwise depauperate freshwater fauna, has an ariid invasion gained any substantial traction. This is true at both regional and community scales, suggesting that competitive constraints may be an important factor regulating adaptive radiation.  相似文献   

7.
Habitat shifts are implicated as the cause of many vertebrate radiations, yet relatively few empirical studies quantify patterns of diversification following colonization of new habitats in fishes. The pufferfishes (family Tetraodon‐tidae) occur in several habitats, including coral reefs and freshwater, which are thought to provide ecological opportunity for adaptive radiation, and thus provide a unique system for testing the hypothesis that shifts to new habitats alter diversification rates. To test this hypothesis, we sequenced eight genes for 96 species of pufferfishes and closely related porcupine fishes, and added 19 species from sequences available in GenBank. We time‐calibrated the molecular phylogeny using three fossils, and performed several comparative analyses to test whether colonization of novel habitats led to shifts in the rate of speciation and body size evolution, central predictions of clades experiencing ecological adaptive radiation. Colonization of freshwater is associated with lower rates of cladogenesis in pufferfishes, although these lineages also exhibit accelerated rates of body size evolution. Increased rates of cladogenesis are associated with transitions to coral reefs, but reef lineages surprisingly exhibit significantly lower rates of body size evolution. These results suggest that ecological opportunity afforded by novel habitats may be limited for pufferfishes due to competition with other species, constraints relating to pufferfish life history and trophic ecology, and other factors.  相似文献   

8.
In this study, the competing hypotheses of single vs. double colonisation events for freshwater Pachyurinae (Sciaenidae) in South America is tested and the historical biogeography of the expansion of this clade within the continent is reconstructed based on phylogenetic analysis. Parsimony and Bayesian inference (BI) for 19 marine and freshwater species assigned to Sciaenidae, Haemulidae and Polypteridae were determined based on partial sequences of the mitochondrial 16S and cytochrome b genes and fragments of the nuclear Tmo‐4C4 and rhodopsin genes. A parsimonious ancestral character reconstruction of euryhalinity was performed on a clade of families of closely related fishes to evaluate the role of ecological fitting in the colonisation of freshwater by a marine sciaenid. The parsimony and BI phylogenetic hypotheses for the concatenated sequences supported the monophyly of the freshwater Sciaenidae. Divergence of the two freshwater clades of Sciaenidae, Pachyurinae and Plagioscion, occurred within the Amazon Basin. Within Pachyurinae, two clades were recovered: one composed of species from the Amazon and the Paraná Basin and a second with representatives from the São Francisco and south‐eastern Atlantic basins. The results were compatible with the hypothesis of a single colonisation event of South American freshwater habitats by a marine lineage. The hypothesis of gradual adaptation to freshwater was rejected in favour of the hypothesis of ecological fitting. Sciaenidae, or a subordinate lineage within the family, is ancestrally capable of withstanding exposure to low‐salinity habitats, which putatively facilitated the colonisation of freshwater habitats. The subsequent diversification and expansion of Pachyurinae across South America followed this colonisation and replicated the general pattern of the area relationships of South American river basins for several other fish groups.  相似文献   

9.
  1. While fish reproduction has played a critical role in development of life-history theory, the collective effects of a marine-to-freshwater invasion on a clade's reproductive ecology have rarely been explored in a phylogenetic context. We analysed and compared a range of quantitative and qualitative components of reproductive ecology in the Australasian terapontid fishes, a family distributed widely across marine, estuarine and freshwater habitats in the Indo-Pacific region. We specifically tested hypotheses that life-history strategies such as larger egg sizes and reduced fecundities are a key characteristic of freshwater species in comparison with their close marine relatives, and also fit a range of currently available evolutionary models describing the processes of ecomorphological and macrohabitat-related diversification.
  2. Using recently developed phylogenetic comparative methods, differences in several quantitative reproductive traits were evident between marine and freshwater species, with reductions in average fecundity and increases in average egg size specifically characterising freshwater species. Evolutionary modelling of major trait axes, as well as specific traits across the family, highlighted significant increases in rates of evolutionary diversification across both freshwater lineages and within freshwater subclades. Modelling also supported the evolution of distinctive morpho-ecotype optima between marine and freshwater species over simpler models of random-walk evolution or single morphological optima.
  3. Review of life-history behaviour identified environmental stimuli related to photoperiod, temperature, and lunar-tidal cycles (and possibly combinations thereof) as playing an important role in stimulating spawning behaviour in most marine–euryhaline species. While some of these variables (temperature and photoperiod) continue to play an important role in some freshwater species, flow regime, particularly streamflow increases, appear more important in stimulating spawning responses, underlining the role of flow regime emerging as a master variable shaping evolutionary trajectories in freshwater clades.
  4. In this review and meta-analysis, we document that adaptation to an entirely freshwater existence has catalysed significant, and in several cases, relatively rapid adaptive evolution to very different life-history strategies within freshwater species. The invasion of freshwaters has had profound impacts on the trajectory of terapontid life-history evolution, driving significant changes in a range of traits relating to fecundity, egg size, spawning stimuli, and spawning substratum. Collective results suggest a distinct adaptive landscape difference between marine and freshwaters. Terapontids can provide a useful model for assessing the consistency of these outcomes with other freshwater-invading groups.
  相似文献   

10.
The marine‐terrestrial richness gradient is among Earth's most dramatic biodiversity patterns, but its causes remain poorly understood. Here, we analyse detailed phylogenies of amniote clades, paleontological data and simulations to reveal the mechanisms underlying low marine richness, emphasising speciation, extinction and colonisation. We show that differences in diversification rates (speciation minus extinction) between habitats are often weak and inconsistent with observed richness patterns. Instead, the richness gradient is explained by limited time for speciation in marine habitats, since all extant marine clades are relatively young. Paleontological data show that older marine invasions have consistently ended in extinction. Simulations show that marine extinctions help drive the pattern of young, depauperate marine clades. This role for extinction is not discernible from molecular phylogenies alone, and not predicted by most previously hypothesised explanations for this gradient. Our results have important implications for the marine‐terrestrial biodiversity gradient, and studies of biodiversity gradients in general.  相似文献   

11.
Ray‐finned fishes (Actinopterygii) dominate modern aquatic ecosystems and are represented by over 32000 extant species. The vast majority of living actinopterygians are teleosts; their success is often attributed to a genome duplication event or morphological novelties. The remainder are ‘living fossils’ belonging to a few depauperate lineages with long‐retained ecomorphologies: Polypteriformes (bichirs), Holostei (bowfin and gar) and Chondrostei (paddlefish and sturgeon). Despite over a century of systematic work, the circumstances surrounding the origins of these clades, as well as their basic interrelationships and diagnoses, have been largely mired in uncertainty. Here, I review the systematics and characteristics of these major ray‐finned fish clades, and the early fossil record of Actinopterygii, in order to gauge the sources of doubt. Recent relaxed molecular clock studies have pushed the origins of actinopterygian crown clades to the mid‐late Palaeozoic [Silurian–Carboniferous; 420 to 298 million years ago (Ma)], despite a diagnostic body fossil record extending only to the later Mesozoic (251 to 66 Ma). This disjunct, recently termed the ‘Teleost Gap’ (although it affects all crown lineages), is based partly on calibrations from potential Palaeozoic stem‐taxa and thus has been attributed to poor fossil sampling. Actinopterygian fossils of appropriate ages are usually abundant and well preserved, yet long‐term neglect of this record in both taxonomic and systematic studies has exacerbated the gaps and obscured potential synapomorphies. At the moment, it is possible that later Palaeozoic‐age teleost, holostean, chondrostean and/or polypteriform crown taxa sit unrecognized in museum drawers. However, it is equally likely that the ‘Teleost Gap’ is an artifact of incorrect attributions to extant lineages, overwriting both a post‐Palaeozoic crown actinopterygian radiation and the ecomorphological diversity of stem‐taxa.  相似文献   

12.
The Eocene–Oligocene sea-level fall has been viewed as a primary driver of biological succession. We used Anisogammaridae living in both marine and freshwater habitats to test the hypothesis that Eocene–Oligocene sea-level fall can explain the marine–freshwater habitat shift in the Far East. We obtained three mitochondrial and two nuclear fragments for 138 samples representing 31 species, covering marine and freshwater habitats from latitudes 24 to 50°N. The phylogenetic analyses revealed that freshwater Anisogammaridae is monophyletic. Divergence-time estimation and ancestral range reconstruction indicate that the family originated from a marine habitat in the North Pacific region during the Eocene and separated between marine and freshwater lineages at 38 Ma. The freshwater lineage diversified at 27 Ma, and further diverged into lotic and lentic clades. Our results suggest that the Eocene–Oligocene sea-level fall provided an opportunity for marine-derived Anisogammaridae to shift to new freshwater habitats. The freshwater anisogammarids dispersed from north to south, resulting in the restriction of current marine species restricted to the latitudes 35–50°N and the range of freshwater species in latitudes 24–40°N. Deep divergences within the freshwater lineage were related to the separation of lotic and lentic environments and the opening of the Japan Sea.  相似文献   

13.
Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks.  相似文献   

14.
The viviparous sea snakes (Hydrophiini) are by far the most successful living marine reptiles, with ~ 60 species that comprise a prominent component of shallow-water marine ecosystems throughout the Indo-West Pacific. Phylogenetically nested within the ~ 100 species of terrestrial Australo-Melanesian elapids (Hydrophiinae), molecular timescales suggest that the Hydrophiini are also very young, perhaps only ~ 8-13 Myr old. Here, we use likelihood-based analyses of combined phylogenetic and taxonomic data for Hydrophiinae to show that the initial invasion of marine habitats was not accompanied by elevated diversification rates. Rather, a dramatic three to six-fold increase in diversification rates occurred at least 3-5 Myr after this transition, in a single nested clade: the Hydrophis group accounts for ~ 80% of species richness in Hydrophiini and ~ 35% of species richness in (terrestrial and marine) Hydrophiinae. Furthermore, other co-distributed lineages of viviparous sea snakes (and marine Laticauda, Acrochordus and homalopsid snakes) are not especially species rich. Invasion of the oceans has not (by itself) accelerated diversification in Hydrophiini; novelties characterizing the Hydrophis group alone must have contributed to its evolutionary and ecological success.  相似文献   

15.
The lower Congo River is a freshwater biodiversity hot spot in Africa characterized by some of the world's largest rapids. However, little is known about the evolutionary forces shaping this diversity, which include numerous endemic fishes. We investigated phylogeographic relationships in Teleogramma, a small clade of rheophilic cichlids, in the context of regional geography and hydrology. Previous studies have been unable to resolve phylogenetic relationships within Teleogramma due to lack of variation in nuclear genes and discrete morphological characters among putative species. To sample more broadly across the genome, we analysed double‐digest restriction‐associated sequencing (ddRAD) data from 53 individuals across all described species in the genus. We also assessed body shape and mitochondrial variation within and between taxa. Phylogenetic analyses reveal previously unrecognized lineages and instances of microallopatric divergence across as little as ~1.5 km. Species ranges appear to correspond to geographic regions broadly separated by major hydrological and topographic barriers, indicating these features are likely important drivers of diversification. Mitonuclear discordance indicates one or more introgressive hybridization events, but no clear evidence of admixture is present in nuclear genomes, suggesting these events were likely ancient. A survey of female fin patterns hints that previously undetected lineage‐specific patterning may be acting to reinforce species cohesion. These analyses highlight the importance of hydrological complexity in generating diversity in certain freshwater systems, as well as the utility of ddRAD‐Seq data in understanding diversification processes operating both below and above the species level.  相似文献   

16.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

17.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia.  相似文献   

18.
Living fossils are lineages that have retained plesiomorphic traits through long time periods. It is expected that such lineages have both originated and diversified long ago. Such expectations have recently been challenged in some textbook examples of living fossils, notably in extant cycads and coelacanths. Using a phylogenetic approach, we tested the patterns of the origin and diversification of liphistiid spiders, a clade of spiders considered to be living fossils due to their retention of arachnid plesiomorphies and their exclusive grouping in Mesothelae, an ancient clade sister to all modern spiders. Facilitated by original sampling throughout their Asian range, we here provide the phylogenetic framework necessary for reconstructing liphistiid biogeographic history. All phylogenetic analyses support the monophyly of Liphistiidae and of eight genera. As the fossil evidence supports a Carboniferous Euramerican origin of Mesothelae, our dating analyses postulate a long eastward over-land dispersal towards the Asian origin of Liphistiidae during the Palaeogene (39–58 Ma). Contrary to expectations, diversification within extant liphistiid genera is relatively recent, in the Neogene and Late Palaeogene (4–24 Ma). While no over-water dispersal events are needed to explain their evolutionary history, the history of liphistiid spiders has the potential to play prominently in vicariant biogeographic studies.  相似文献   

19.
New ecological niches that may arise due to climate change can trigger diversification, but their colonisation often requires adaptations in a suite of life‐history traits. We test this hypothesis in species‐rich Mycalesina butterflies that have undergone parallel radiations in Africa, Asia, and Madagascar. First, our ancestral state reconstruction of habitat preference, using c. 85% of extant species, revealed that early forest‐linked lineages began to invade seasonal savannahs during the late Miocene‐Pliocene. Second, rearing replicate pairs of forest and savannah species from the African and Malagasy radiation in a common garden experiment, and utilising published data from the Asian radiation, demonstrated that savannah species consistently develop faster, have smaller bodies, higher fecundity with an earlier investment in reproduction, and reduced longevity, compared to forest species across all three radiations. We argue that time‐constraints for reproduction favoured the evolution of a faster pace‐of‐life in savannah species that facilitated their persistence in seasonal habitats.  相似文献   

20.
A major challenge in evolutionary biology lies in explaining patterns of high species numbers found in biodiversity hot spots. Tropical coral reefs underlie most marine hot spots and reef-associated fish faunas represent some of the most diverse assemblages of vertebrates on the planet. Although the standing diversity of modern reef fish clades is usually attributed to their ecological association with corals, untangling temporal patterns of codiversification has traditionally proved difficult. In addition, owing to uncertainty in higher-level relationships among acanthomorph fish, there have been few opportunities to test the assumption that reef-association itself leads to higher rates of diversification compared to other habitats. Here we use relaxed-clock methods in conjunction with statistical measures of species accumulation and phylogenetic comparative methods to clarify the temporal pattern of diversification in reef and nonreef-associated lineages of tetraodontiforms, a morphologically diverse order of teleost fish. We incorporate 11 fossil calibrations distributed across the tetraodontiform tree to infer divergence times and compare results from models of autocorrelated and uncorrelated evolutionary rates. All major tetraodontiform reef crown groups have significantly higher rates of diversification than the order as a whole. None of the nonreef-associated families show this pattern with the exception of the aracanid boxfish. Independent contrasts analysis also reveals a significantly positive relationship between diversification rate and proportion of reef-associated species within each family when aracanids are excluded. Reef association appears to have increased diversification rate within tetraodontiforms. We suggest that both intrinsic factors of reef habitat and extrinsic factors relating to the provincialization and regionalization of the marine biota during the Miocene (about 23-5 MY) played a role in shaping these patterns of diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号