首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

2.
Predictions on the consequences of the rapidly increasing atmospheric CO2 levels and associated climate warming for population dynamics, ecological community structure and ecosystem functioning depend on mechanistic energetic models of temperature effects on populations and their interactions. However, such mechanistic approaches combining warming effects on metabolic (energy loss of organisms) and feeding rates (energy gain by organisms) remain a key, yet elusive, goal. Aiming to fill this void, we studied the metabolic rates and functional responses of three differently sized, predatory ground beetles on one mobile and one more resident prey species across a temperature gradient (5, 10, 15, 20, 25 and 30 °C). Synthesizing metabolic and functional‐response theory, we develop novel mechanistic predictions how predator–prey interaction strengths (i.e., functional responses) should respond to warming. Corroborating prior theory, warming caused strong increases in metabolism and decreases in handling time. Consistent with our novel model, we found increases in predator attack rates on a mobile prey, whereas attack rates on a mostly resident prey remained constant across the temperature gradient. Together, these results provide critically important information that environmental warming generally increases the direct short‐term per capita interaction strengths between predators and their prey as described by functional‐response models. Nevertheless, the several fold stronger increase in metabolism with warming caused decreases in energetic efficiencies (ratio of per capita feeding rate to metabolic rate) for all predator–prey interactions. This implies that warming of natural ecosystems may dampen predator–prey oscillations thus stabilizing their dynamics. The severe long‐term implications; however, include predator starvation due to energetic inefficiency despite abundant resources.  相似文献   

3.
A central question in evolutionary biology is how coevolutionary history between predator and prey influences their interactions. Contemporary global change and range expansion of exotic organisms impose a great challenge for prey species, which are increasingly exposed to invading non‐native predators, with which they share no evolutionary history. Here, we complete a comprehensive survey of empirical studies of coevolved and naive predator?prey interactions to assess whether a shared evolutionary history with predators influences the magnitude of predator‐induced defenses mounted by prey. Using marine bivalves and gastropods as model prey, we found that coevolved prey and predator‐naive prey showed large discrepancies in magnitude of predator‐induced phenotypic plasticity. Although naive prey, predominantly among bivalve species, did exhibit some level of plasticity – prey exposed to native predators showed significantly larger amounts of phenotypic plasticity. We discuss these results and the implications they may have for native communities and ecosystems.  相似文献   

4.
Synthesis Predation risk experienced by individuals living in groups depends on the balance between predator dilution, competition for refuges, and predator interference or synergy. These interactions operate between prey species as well: the benefits of group living decline in the presence of an alternative prey species. We apply a novel model‐fitting approach to data from field experiments to distinguish among competing hypotheses about shifts in predator foraging behavior across a range of predator and prey densities. Our study provides novel analytical tools for analyzing predator foraging behavior and offers insight into the processes driving the dynamics of coral reef fish. Studies of predator foraging behavior typically focus on single prey species and fixed predator densities, ignoring the potential importance of complexities such as predator dilution; predator‐mediated effects of alternative prey; heterospecific competition; or predator–predator interactions. Neglecting the effects of prey density is particularly problematic for prey species that live in mixed species groups, where the beneficial effects of predator dilution may swamp the negative effects of heterospecific competition. Here we use field experiments to investigate how the mortality rates of a shoaling coral reef fish (a wrasse: Thalassoma amblycephalum), change as a result of variation in: 1) conspecific density, 2) density of a predator (a hawkfish: Paracirrhites arcatus), and 3) presence of an alternative prey species that competes for space (a damselfish: Pomacentrus pavo). We quantify changes in prey mortality rates from the predator's perspective, examining the effects of added predators or a second prey species on the predator's functional response. Our analysis highlights a model‐fitting approach that discriminates amongst multiple hypotheses about predator foraging in a community context. Wrasse mortality decreased with increasing conspecific density (i.e. mortality was inversely density‐dependent). The addition of a second predator doubled prey mortality rates, without significantly changing attack rate or handling time – i.e. there was no evidence for predator interference. The presence of a second prey species increased wrasse mortality by 95%; we attribute this increase either to short‐term apparent competition (predator aggregation) or to a decrease in handling time of the predator (e.g. through decreased wrasse vigilance). In this system, 1) prey benefit from intraspecific group living though a reduced predation risk, and 2) the benefit of group living is reduced in the presence of an alternative prey species.  相似文献   

5.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

6.
The invasion of alien species into areas beyond their native ranges is having profound effects on ecosystems around the world. In particular, novel alien predators are causing rapid extinctions or declines in many native prey species, and these impacts are generally attributed to ecological naïveté or the failure to recognise a novel enemy and respond appropriately due to a lack of experience. Despite a large body of research concerning the recognition of alien predation risk by native prey, the literature lacks an extensive review of naïveté theory that specifically asks how naïveté between novel pairings of alien predators and native prey disrupts our classical understanding of predator–prey ecological theory. Here we critically review both classic and current theory relating to predator–prey interactions between both predators and prey with shared evolutionary histories, and those that are ecologically ‘mismatched’ through the outcomes of biological invasions. The review is structured around the multiple levels of naïveté framework of Banks & Dickman (2007), and concepts and examples are discussed as they relate to each stage in the process from failure to recognise a novel predator (Level 1 naïveté), through to appropriate (Level 2) and effective (Level 3) antipredator responses. We discuss the relative contributions of recognition, cue types and the implied risk of cues used by novel alien and familiar native predators, to the probability that prey will recognise a novel predator. We then cover the antipredator response types available to prey and the factors that predict whether these responses will be appropriate or effective against novel alien and familiar native predators. In general, the level of naïveté of native prey can be predicted by the degree of novelty (in terms of appearance, behaviour or habitat use) of the alien predator compared to native predators with which prey are experienced. Appearance in this sense includes cue types, spatial distribution and implied risk of cues, whilst behaviour and habitat use include hunting modes and the habitat domain of the predator. Finally, we discuss whether the antipredator response can occur without recognition per se, for example in the case of morphological defences, and then consider a potential extension of the multiple levels of naïveté framework. The review concludes with recommendations for the design and execution of naïveté experiments incorporating the key concepts and issues covered here. This review aims to critique and combine classic ideas about predator–prey interactions with current naïveté theory, to further develop the multiple levels of naïveté framework, and to suggest the most fruitful avenues for future research.  相似文献   

7.
Theoretical treatments of intraguild predation and its effects on behavioral interactions regard the phenomenon as a size‐structured binary response wherein predation among competitors is completely successful or completely unsuccessful. However, intermediate outcomes occur when individuals escape intraguild (IG) interactions with non‐lethal injuries. While the effects of wounds for prey include compromised mobility and increased predation risk, the consequences of similar injuries among top predators are not well understood, despite the implications for species interactions. Using an amphibian IG predator, Ambystoma opacum (Caudata: Ambystomatidae), we examined associations between non‐lethal injuries and predator body size, foraging strategy, microhabitat selection, and intraspecific agonistic interactions. Wounds were common among IG predators, generally increasing in frequency throughout larval ontogeny. Non‐lethal injuries were associated with differences in predator body size and behavior, with injured predators exhibiting smaller body sizes, increased use of benthic microhabitats, reduced agonistic displays, and increased risk of intraspecific aggression. While such effects were not ultimately associated with reduced foraging success, non‐lethal injury could contribute to niche partitioning between injured and healthy predators via habitat selection, but injured predators likely continue to exert predatory pressure on IG and basal prey populations. Our results indicate that studies of top‐down population regulation should incorporate injury‐related modifications to both prey and predator behavior and size structure.  相似文献   

8.
Estimating the prevalence and strength of non-independent predator effects   总被引:2,自引:0,他引:2  
Understanding whether multiple predator species have independent effects on shared prey is critical for understanding community dynamics. We describe the prevalence and strength of non-independence between predators by quantifying the prey’s risk of predation and the degree to which it deviates from the risk predicted from a null model of independent predator effects. Specifically, we document how frequently non-independent effects occur among ten different multiple predator combinations with mayfly larvae as prey. These predator combinations vary both predator density and predator species richness. Overall, the predator effects were non-independent and translated to an average of 27% fewer prey being consumed compared to independent predator effects. Non-independence of this magnitude is likely to have population level consequences for the prey and influence the distribution or prey preference of predators. Closer inspection shows that much of the risk reduction in this system is weak, to the point of being indistinguishable from independent predator effects, while few effects are strong. This pattern of many weak interactions and few strong ones parallels the pattern of interaction strengths documented previously in intertidal communities. Consequently, understanding strong interactors in multiple predator systems may help us understand the importance of a species.  相似文献   

9.
Despite knowledge on invasive species’ predatory effects, we know little of their influence as prey. Non‐native prey should have a neutral to positive effect on native predators by supplementing the prey base. However, if non‐native prey displace native prey, then an invader's net influence should depend on both its abundance and value relative to native prey. We conducted a meta‐analysis to quantify the effect of non‐native prey on native predator populations. Relative to native prey, non‐native prey similarly or negatively affect native predators, but only when studies employed a substitutive design that examined the effects of each prey species in isolation from other prey. When native predators had access to non‐native and native prey simultaneously, predator abundance increased significantly relative to pre‐invasion abundance. Although non‐native prey may have a lower per capita value than native prey, they seem to benefit native predators by serving as a supplemental prey resource.  相似文献   

10.
Ecosystems host multiple coexisting predator species whose interactions may strengthen or weaken top–down control of grazers. Grazer populations often exhibit size‐structure, but the nature of multiple predator effects on suppression of size‐structured prey has seldom been explicitly considered. In a southeastern US salt‐marsh, we used both field (additive design) and mesocosm (additive‐substitutive design) experiments to test the independent and combined effects of two species of predatory crab on the survival and predator‐avoidance behavior (i.e. a non‐consumptive effect) of both juveniles and adults of a dominant grazing snail. Results showed: 1) juvenile snails were more vulnerable to predation; 2) consumptive impacts of predators were hierarchically nested, i.e. the larger predator consumed both juvenile and adult snails, while the smaller‐bodied predator consumed only juvenile snails; 3) there were no emergent multiple predator effects on snail consumption; and 4) non‐consumptive effects differed from consumptive effects, with only the large predator inducing predator‐avoidance behavior of individuals within either snail ontogenetic class. The smaller predator therefore played a functionally redundant trophic role across the prey classes considered, augmenting and potentially stabilizing trophic regulation of juvenile snails. Meanwhile, the larger predator played a complementary and functionally unique role by both expanding the size‐spectrum of prey trophic regulation and non‐consumptively altering prey behavior. While our study suggests that nestedness of consumptive interactions determined by predator and prey body sizes may allow prediction of the functional redundancy of particular predator species, it also shows that traits beyond predator body size (e.g. habitat domain) may be required to predict potentially cascading non‐consumptive effects. Future studies of multiple predators (and predator biodiversity) should continue to strive towards greater realism by incorporating not only size‐structured prey, but also other aspects of resource and environmental heterogeneity typical of natural ecosystems.  相似文献   

11.
12.
Investigating how prey density influences a prey’s combined predation risk from multiple predator species is critical for understanding the widespread importance of multiple predator effects. We conducted experiments that crossed six treatments consisting of zero, one, or two predator species (hellgrammites, greenside darters, and creek chubs) with three treatments in which we varied the density of mayfly prey. None of the multiple predator effects in our system were independent, and instead, the presence of multiple predator species resulted in risk reduction for the prey across both multiple predator combinations and all three levels of prey density. Risk reduction is likely to have population-level consequences for the prey, resulting in larger prey populations than would be predicted if the effects of multiple predator species were independent. For one of the two multiple predator combinations, the magnitude of risk reduction marginally increased with prey density. As a result, models predicting the combined risk from multiple predator species in this system will sometimes need to account for prey density as a factor influencing per-capita prey death rates.  相似文献   

13.
Habitat management under the auspices of conservation biological control is a widely used approach to foster conditions that ensure a diversity of predator species can persist spatially and temporally within agricultural landscapes in order to control their prey (pest) species. However, an emerging new factor, global climate change, has the potential to disrupt existing conservation biological control programs. Climate change may alter abiotic conditions such as temperature, precipitation, humidity and wind that in turn could alter the life-cycle timing of predator and prey species and the behavioral nature and strength of their interactions. Anticipating how climate change will affect predator and prey communities represents an important research challenge. We present a conceptual framework—the habitat domain concept—that is useful for understanding contingencies in the nature of predator diversity effects on prey based on predator and prey spatial movement in their habitat. We illustrate how this framework can be used to forecast whether biological control by predators will become more effective or become disrupted due to changing climate. We discuss how changes in predator–prey interactions are contingent on the tolerances of predators and prey species to changing abiotic conditions as determined by the degree of local adaptation and phenotypic plasticity exhibited by species populations. We conclude by discussing research approaches that are needed to help adjust conservation biological control management to deal with a climate future.  相似文献   

14.
The mineral and biochemical food quality of prey may limit predator production. This well‐studied direct bottom–up effect is especially prominent for herbivore–plant interactions. Low‐quality prey species, particularly when defended, are generally considered to be less prone to predator‐driven extinction. Undefended high‐quality prey species sustain high predator production thereby potentially increasing their own extinction risk. The food quality of primary producers is highly species‐specific. In communities of competing prey species, predators thus may supplement their diets of low‐quality prey with high‐quality prey, leading to indirect horizontal interactions between prey species of different food quality. We explore how these predator‐mediated indirect interactions affect species coexistence in a general predator–prey model that is parametrized for an experimental algae– rotifer system. To cover a broad range of three essential functional traits that shape many plant–herbivore interactions we consider differences in 1) the food quality of the prey species, 2) their competitive ability for nutrient uptake and 3) their defence against predation. As expected, low food quality of prey can, similarly to defence, provide protection against extinction by predation. Counterintuitively, our simulations demonstrate that being of high food quality also prevents extinction of that prey species and additionally promotes coexistence with a competing, low‐quality prey. The persistence of the high‐quality prey enables a high conversion efficiency and control of the low‐quality prey by the predator and allows for re‐allocation of nutrients to the high‐quality competitor. Our results show that high food quality is not necessarily detrimental for a prey species but instead can protect against extinction and promote species richness and functional biodiversity.  相似文献   

15.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

16.
While it is well documented that organisms can express phenotypic plasticity in response to single gradients of environmental variation, our understanding of how organisms integrate information along multiple environmental gradients is limited in many systems. Using the freshwater snail Helisoma trivolvis and two common predators (water bugs Belostoma flumineum and crayfish Orconectes rusticus), we explored how prey integrate information along multiple predation risk gradients (i.e. caged predators fed increasing amounts of prey biomass) that induce opposing phenotypes. When exposed to single predators fed increasing amounts of prey biomass, we detected threshold responses; intermediate amounts of consumed biomass induced phenotypic responses, but higher amounts induced little additional induction. This suggests that additional increases in predator‐induced traits with greater predator risk offer minimal increases in fitness or that a limit in the response magnitude was reached. Additionally, the response thresholds were contingent on the predator and focal trait. For shell width, responses were generally detected at a lower amount of consumed biomass by water bugs compared to crayfish. Within the crayfish treatments, we found that the shell thickness response threshold was lower than the shell width response threshold. When we combined gradients of consumed biomass from both predators, we found that the magnitude of response to one predator was often reduced when the other predator was present. Interestingly, these effects were often detected at consumed biomass levels that were lower than the threshold concentration necessary to elicit a response in the single‐predator treatments. Moreover, our combined predator treatments revealed that snails shifted from discrete responses to more continuous (i.e. graded) responses. Together, our results reveal that organisms experiencing multiple environmental gradients can integrate this information to make phenotypic decisions and demonstrate the novel result that an exposure to multiple species of predators can lower the response threshold of prey.  相似文献   

17.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

18.
Predators are a major source of stress in natural systems because their prey must balance the benefits of feeding with the risk of being eaten. Although this ‘fear’ of being eaten often drives the organization and dynamics of many natural systems, we know little about how such risk effects will be altered by climate change. Here, we examined the interactive consequences of predator avoidance and projected climate warming in a three‐level rocky intertidal food chain. We found that both predation risk and increased air and sea temperatures suppressed the foraging of prey in the middle trophic level, suggesting that warming may further enhance the top‐down control of predators on communities. Prey growth efficiency, which measures the efficiency of energy transfer between trophic levels, became negative when prey were subjected to predation risk and warming. Thus, the combined effects of these stressors may represent an important tipping point for individual fitness and the efficiency of energy transfer in natural food chains. In contrast, we detected no adverse effects of warming on the top predator and the basal resources. Hence, the consequences of projected warming may be particularly challenging for intermediate consumers residing in food chains where risk dominates predator‐prey interactions.  相似文献   

19.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

20.
Behavioural trophic cascades highlight the importance of indirect/risk effects in the maintenance of healthy trophic‐level links in complex ecosystems. However, there is limited understanding on how the loss of indirect top–down control can cascade through the food‐web to modify lower level predator–prey interactions. Using a reef fish food‐web, our study examines behavioural interactions among predators to assess how fear elicited by top‐predator cues (visual and chemical stimuli) can alter mesopredator behaviour and modify their interaction with resource prey. Under experimental conditions, the presence of any cue (visual, chemical, or both) from the top‐predator (coral trout Plectropomus leopardus) strongly restricted the distance swum, area explored and foraging activity of the mesopredator (dottyback Pseudochromis fuscus), while indirectly triggering a behavioural release of the resource prey (recruits of the damselfish Pomacentrus chrysurus). Interestingly, the presence of a large non‐predator species (thicklip wrasse Hemigymnus melapterus) also mediated the impact of the mesopredator on prey, as it provoked mesopredators to engage in an ‘inspection’ behaviour, while significantly reducing their feeding activity. Our study describes for the first time a three‐level behavioural cascade of coral reef fish and stresses the importance of indirect interactions in marine food‐webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号