首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two NAD-dependent aldehyde dehydrogenase enzymes from rat liver mitochondria have been partially purified and characterized. One enzyme (enzyme I) has molecular weight of 320,000 and has a broad substrate specificity which includes formaldehyde; NADP is not a cofactor for this enzyme. This enzyme has Km values for most aldehydes in the micromolar range. The isoelectric point was found to be 6.06. A second enzyme (enzyme II) has a molecular weight of 67,000, a Km value for most aldehydes in the millimolar range but no activity toward formaldehyde. NADP does serve as a coenzyme, however. The isoelectric point is 6.64 for this enzyme. By utilization of the different substrate properties of these two enzymes it was possible to demonstrate a time-dependent release from digitonin-treated liver mitochondria. The high Km, low molecular weight enzyme (enzyme II) is apparently in the intermembrane space while the low Km, high molecular weight enzyme (enzyme I) is in the mitochondrial matrix and is most likely responsible for oxidation of acetaldehyde formed from ethanol.  相似文献   

2.
Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis   总被引:11,自引:0,他引:11  
C4 acid decarboxylation in one group of C4-pathway species is mediated by an NAD malic enzyme. This paper reports on the partial purification and properties of this enzyme from three species of this group, Atriplex spongiosa, Amaranthus edulis, and Panicum miliaceum. Depending upon the conditions, the Atriplex spongiosa enzyme was 5–30% as active with NADP compared with NAD but the enzyme from the other species was specific for NAD. The enzyme from each species had an absolute requirement for Mn2+ that could not be replaced by Mg2+, and activity was increased several fold by low concentrations of either CoA or acetyl CoA. For the enzyme from Atriplex spongiosa and Amaranthus edulis, there was cooperativity for malate binding and the activators CoA and acetyl CoA functioned to increase the affinity of malate for the enzyme. The Hill coefficients for malate binding were approximately 2 and 4, respectively. However, with the enzyme from Panicum miliaceum, cooperative binding of malate was not apparent and activators operated by increasing V rather than the affinity for malate. Bicarbonate inhibited the enzyme from Atriplex spongiosa and Amaranthus edulis and its effect was inversely related to the concentrations of malate, NAD, and activators. The possible significance of these various allosteric effects on the regulation of the enzyme in vivo is discussed. Reactant concentrations and other conditions required for maximum activity are reported.  相似文献   

3.
Diamine oxidase was purified separately from cotyledon and embryo of pea seedlings germinated for 6 days. The Km of the cotyledon enzyme for putrescine was 1.6 × 10?4M while that for the embryo enzyme was 9 × 10?5M. On heating for 15 min at 70° the embryo enzyme retained about 90% activity whereas the cotyledon enzyme retained only 20% activity. The electrophoretic mobility of the cotyledon enzyme was ca twice that of the enzyme from embryo.  相似文献   

4.
Ethanolamine kinase was partially purified from the larvae of Culex pipiens fatigans and its properties were studied. The enzyme was separated from choline kinase by acetic acid precipitation at pH 5.0 of a 13,000g supernatant of the larval homogenate. Alkaline phosphatase activity was removed from the enzyme preparation by the acid treatment followed by ammonium sulfate fractionation. The enzyme was localized in the cytosolic fraction and had a requirement for Mg2+ as a cofactor. The Km values for ethanolamine and ATP were 4 × 10?4 and 1.54 × 10?4m, respectively. The affinity of the enzyme for nucleotide triphosphates was in the order, ATP > ITP > GTP while UTP and CTP were poorly utilized. p-Chloromercuribenzoate and N-ethylmaleimide inhibited the enzyme activity and reduced glutathione protected the enzyme from their inhibition. Choline and serine had no effect on the enzyme activity. The enzyme had a molecular weight of 44, 000 daltons as determined by gel filtration chromatography. Eggs contained the highest specific activity of the enzyme while adult insects had the highest total enzyme activity.  相似文献   

5.
Purification and properties of esterase from Bacillus stearothermophilus   总被引:3,自引:0,他引:3  
An enzyme, which hydrolyzes p-nitrophenyl and m-carboxyphenyl esters of n-fatty acids, is purified from Bacillus stearothermophilus. The enzyme reaction obeys the Michaelis-Menten theory. The Michaelis constant (Km) decreases with increasing the length of carbon number of the acids, but the maximum velocity (V) is maximum for n-caproate. The enzyme is inhibited by diisopropyl fluorophosphate (DFP),2 and 1 mole of DFP reacts with 1 mole of the enzyme of the molecular weight of 42,000–47,000. The enzyme is considered to be carboxylic ester hydrolase (EC 3.1.1.1). The effects of temperature on Km or V for p-nitrophenyl n-caproate and on the inhibitor constant (Ki) for n-laurate suggest a thermal transition in the conformation of the enzyme protein at 55 °C. The enzyme is strongly inhibited by sulfhydryl reagents such as p-chloromercuribenzoate and 5,5′-dithiobis (2-nitrobenzoic acid) at 65 °C, but less at 30 °C. The relationship between the inhibition of the activity by p-chloromercuribenzoate and temperature may suggest that a thermal transition of the enzyme protein accompanies some structural change around sulfhydryl group.  相似文献   

6.
Baicalin-β-d-glucuronidase was produced from a culture of Aspergillus niger b.48 strain using Scutellaria root extract as an enzyme inducer, purified and characterized. The enzyme’s molecular weight was approximately 45 kDa; its optimal operating temperature and pH were 50 °C and 5.0, respectively. The enzyme specifically hydrolysed 7-O-β-d-glucuronide of baicalin into baicalein, weakly hydrolysed β-d-glucuronide of p-nitrophenyl-β-d-glucuronide and p-phenolphthalein-β-d-glucuronide, but did not hydrolyse β-d-glucuronide of glycyrrhizin. The Michaelis constant (Km) was 21.74 mM; Vmax was 11.63 mM/h. Common metallic ions almost did not effect enzyme activity; greater than 10 mM/L Cu2+ and greater 50 mM/L Fe3+ ion strongly inhibited enzyme activity. The use of pure enzyme in baicalin conversion to baicalein was costly, the crude baicalin-β-d-glucuronidase from A. niger b.48 strain was used in the preparation of baicalein from baicalin to keep costs low. The optimum conditions for baicalein production from crude enzyme reaction were 1% baicalin reacting for 20 h–24 h at pH 5.0 and 50 °C. Here, 10.7 g baicalein was obtained from 20 g baicalin using the crude enzyme, and the molar yield was 88.4 %. Therefore, active baicalein was successfully produced at low cost from baicalin using a non-transgenic crude enzyme from A. niger b.48.  相似文献   

7.
Porphobilinogen oxygenase from wheat germ was purified and was found to be a cationic protein containing 8 mol of nonheme iron and 8–10 mol of labile sulfide per mole of enzyme (Mr, 100,000). The enzyme isolated from either wheat germ or rat liver microsomes was found to exist in multiple molecular weight forms. When succinylated, only one molecular weight form of 25,000 was obtained and it retained full activity. It had lost all of the sigmoidal kinetics characteristic of the native enzyme. While the native enzyme had an n = 3.5, the succinylated enzyme showed Michaelian kinetics. A Km of approximately 1.70 mm was determined for the succinylated wheat germ enzyme, and a Km of approximately 2.5 mm was found for the succinylated microsomal enzyme. Acetylation of the enzyme afforded an active acetylated enzyme which showed allosteric kinetics and multiple molecular weight forms. The products formed by the succinylated enzyme were the same as those formed by the native enzyme.  相似文献   

8.
cis,cis-Muconate cycloisomerase (cis,cis-muconate lactonizing enzyme, EC 5.5.1.1.) was purified in crystalline form from Pseudomonas putida. Ultracentrifugation studies, as well as gel filtration chromatography and electrophoresis, indicate that the enzyme is an oligomeric protein of molecular weight 252,000 (s20,w 12.20 × 10?13 s), which is built of six homologous protomers of molecular weight 42,000. Studies of enzyme crystals and enzyme molecules in the electron microscope suggest that the cis,cis-muconate cycloisomerase is a hexamer in which the six protomers are arranged in a dihedral point-group symmetry 32 (D3). Each protomer has a diameter of 42.5Åand six protomers are associated in a structure with a trigonal antiprismatic geometry (a hexamer D3 octahedron). This model could account for the dimensions most frequently observed by negative staining of the enzyme in solution. A model for the three-dimensional structure of enzyme crystals in which each hexameric enzyme molecule is surrounded by eight neighbouring enzyme molecules, is described.  相似文献   

9.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) was crystallized from a heterozygous tobacco (Nicotiana tabacum L.) aurea mutant (Su/su), its wild-type sibling (su/su), and green revertant plants regenerated from green spots found on leaves of haploid Su plants. No differences were found in the specific activity or kinetic parameters of this enzyme, when comparing Su/su and su/su plants of the same age, which had been grown under identical conditions. The enzyme crystallized from revertant plants was also identical to the enzyme from wild-type plants with the exception of one clone, designated R2. R2 has a chromosome number approximately double that of the wild-type (87.0 ± 11.1 versus 48). The enzyme from R2 had a lower Vmax for CO2, although the Km values were identical to those for the enzyme from the wild-type plant. The enzyme from all mutant plants had identical isoelectric points, identical molecular weight as demonstrated by migration on native and sodium dodecyl sulfate (SDS)-polyacrylamide gels, and the same ratio of large to small subunits as the enzyme from the wild-type. The large subunit of the enzyme from tobacco leaves exhibited a different electrophoretic pattern than did the large subunit from spinach; there were two to three bands on SDS-polyacrylamide gels for the tobacco enzyme whereas the enzyme from spinach had only one species of large subunit.  相似文献   

10.
The cloning and expression of β-glucosidase II, encoded by the geneßglu2, from thermotolerant yeastPichia etchellsii intoEscherichia coli is described. Cloning of the 7.3 kbBamHI/SalI yeast insert containingßglu2 in pUC18, which allowed for reverse orientation of the insert, resulted in better enzyme expression. Transformation of this plasmid intoE. coli JM109 resulted in accumulation of the enzyme in periplasmic space. At 50°C, the highest hydrolytic activity of 1686 IU/g protein was obtained on sophorose. Batch and fed-batch techniques were employed for enzyme production in a 14 L bioreactor. Exponential feeding rates were determined from mass balance equations and these were employed to control specific growth rate and in turn maximize cell growth and enzyme production. Media optimization coupled with this strategy resulted in increased enzyme units of 1.2 kU/L at a stabilized growth rate of 0.14 h?1. Increased enzyme production in bioreactor was accompanied by formation of inclusion bodies.  相似文献   

11.
Previous kinetic characterization of Escherichia coli fructose 1,6-bisphosphatase (FBPase) was performed on enzyme with an estimated purity of only 50%. Contradictory kinetic properties of the partially purified E. coli FBPase have been reported in regard to AMP cooperativity and inactivation by fructose-2,6-bisphosphate. In this investigation, a new purification for E. coli FBPase has been devised yielding enzyme with purity levels as high as 98%. This highly purified E. coli FBPase was characterized and the data compared to that for the pig kidney enzyme. Also, a homology model was created based upon the known three-dimensional structure of the pig kidney enzyme. The kcat of the E. coli FBPase was 14.6 s−1 as compared to 21 s−1 for the pig kidney enzyme, while the Km of the E. coli enzyme was approximately 10-fold higher than that of the pig kidney enzyme. The concentration of Mg2+ required to bring E. coli FBPase to half maximal activity was estimated to be 0.62 mM Mg2+, which is twice that required for the pig kidney enzyme. Unlike the pig kidney enzyme, the Mg2+ activation of the E. coli FBPase is not cooperative. AMP inhibition of mammalian FBPases is cooperative with a Hill coefficient of 2; however, the E. coli FBPase displays no cooperativity. Although cooperativity is not observed, the E. coli and pig kidney enzymes show similar AMP affinity. The quaternary structure of the E. coli enzyme is tetrameric, although higher molecular mass aggregates were also observed. The homology model of the E. coli enzyme indicated slight variations in the ligand-binding pockets compared to the pig kidney enzyme. The homology model of the E. coli enzyme also identified significant changes in the interfaces between the subunits, indicating possible changes in the path of communication of the allosteric signal.  相似文献   

12.
A new technique, the quantitative determination of total enzyme concentrations by specific immunoprecipitation with purified, radioiodinated antibodies, was used to investigate the presence and possible roles of inactive enzyme in the regulation of chalcone synthase. Dark-grown cell suspension cultures from parsley (Petroselinum hortense) contained neither catalytically active nor detectable amounts of immunoprecipitable chalcone synthase. Irradiation induced large increases and subsequent decreases of both. Significant differences in the peak positions and in the half-lives of active and total chalcone synthase indicated that induced cells contained inactive as well as active enzyme forms. The presence of inactive enzyme could be explained by two different modes of regulation, (i) simultaneous de novo synthesis of active and inactive enzyme (“Simultaneous Model”), or (ii) de novo synthesis of active enzyme only, with sequential steps of inactivation and degradation (“Sequential Model”). Both models were compatible with experimental results, as analyzed mathematically by investigating the relations between curves for rate of enzyme synthesis, enzyme activity, total enzyme, and half-lives of active and total enzyme. However, the “Simultaneous Model” postulated that de novo synthesis of inactive enzyme represented always the vast majority of total enzyme synthesis, while the Sequential Model integrated inactive enzyme with facility in a sequence of irreversible inactivation and degradation of active enzyme. Experiments with repeated induction indicated that cells containing large amounts of inactive enzyme increased enzyme activity by de novo synthesis rather than by activation of preexisting inactive enzyme.  相似文献   

13.
We have previously shown that orotate phosphoribosyltransferase (OPRT) and orotidine 5′-monophosphate decarboxylase (OMPDC) in human malaria parasite Plasmodium falciparum form an enzyme complex, containing two subunits each of OPRT and OMPDC. To enable further characterization, we expressed and purified P. falciparum OPRT-OMPDC enzyme complex in Escherichia coli. The OPRT and OMPDC activities of the enzyme complex co-eluted in the chromatographic columns used during purification. Kinetic parameters (Km, kcat and kcat/Km) of the enzyme complex were 5- to 125-folds higher compared to the monofunctional enzyme. Interestingly, pyrophosphate was a potent inhibitor to the enzyme complex, but had a slightly inhibitory effect for the monofunctional enzyme. The enzyme complex resisted thermal inactivation at higher temperature than the monofunctional OPRT and OMPDC. The result suggests that the OPRT-OMPDC enzyme complex might have kinetic benefits and thermal stability significantly different from the monofunctional enzyme.  相似文献   

14.
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10?4m. The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.  相似文献   

15.
trans-2′-Carboxybenzalpyruvate hydratase-aldolase was purified from a phenanthrene-degrading bacterium, Nocardioides sp. strain KP7, and characterized. The purified enzyme was found to have molecular masses of 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography. Thus, the homotrimer of the 38-kDa subunit constituted an active enzyme. The Km and kcat values of this enzyme for trans-2′-carboxybenzalpyruvate were 50 μM and 13 s−1, respectively. trans-2′-Carboxybenzalpyruvate was transformed to 2-carboxybenzaldehyde and pyruvate by the action of this enzyme. The structural gene for this enzyme was cloned and sequenced; the length of this gene was 996 bp. The deduced amino acid sequence of this enzyme exhibited homology to those of trans-2′-hydroxybenzalpyruvate hydratase-aldolases from Pseudomonas putida PpG7 and Pseudomonas sp. strain C18.  相似文献   

16.
Cysteine residues in prawn (Penaeus vannamei) β-N-acetyl-d-glucosaminidase (NAGase, EC 3.2.1.52) have been modified by p-chloromercuribenzoate (PCMB). The results show that sulfhydryl group is essential for the activity of the enzyme. Inactivation kinetics of the enzyme by mercuric chloride (HgCl2) has been studied using the kinetic method of the substrate reaction during inactivation of enzyme previously described by Tsou. The kinetic results show that the inactivation of the enzyme is an irreversible reaction. The microscopic rate constants for the reaction of Hg2+ with free enzyme and with the enzyme-substrate complex are determined. Comparison of these rate constants indicates that the presence of substrate offers marked protection of this enzyme against inactivation by Hg2+. The above results suggest that the cysteine residue is essential for activity.  相似文献   

17.
Glucose-grown cells of Streptococcus salivarius have been shown to contain a polyglucose phosphorylase which had maximum activity in the stationary phase of growth. Despite the fact that activity in crude cell-free extracts was two- to threefold greater in the presence of corn dextrin than with oyster glycogen, subsequent purification (200-fold) of the enzyme from the soluble fraction of the organism by protamine sulfate treatment, ammonium sulfate fractionation (30–50%), ion exchange chromatography on DEAE-cellulose and gel filtration on Sephadex G-200 demonstrated that this dextrin/glycogen activity was associated with a single enzyme. Since glucose-grown cells of S. salivarius are known to synthesize a typical glycogen polymer, the enzyme was named: glycogen phosphorylase. The purified enzyme preparation was devoid of phosphoglucomutase and ADP-glucose pyrophosphorylase, but contained a small amount of ADP-glucose: α-1,4 glucan transferase activity. The enzyme was stable at ?10 °C in the presence of 0.2 m NaF, while the pH optimum for the enzyme was 6.0 both with glycogen and with dextrin. With the purified enzyme, corn dextrin was the best primer, both in the direction of synthesis and in the direction of phosphorolysis, being 1.8–1.9 times more effective than purified S. salivarius glycogen. When the enzyme was assayed in the direction of glycogen synthesis, a Km value of 3.4 mm was obtained for glucose-1-P, while the values for S. salivarius glycogen, oyster glycogen and corn dextrin were 25, 42, and 40 mg/ml, respectively. In the direction of phosphorolysis, Km values were 20 mm for Pi obtained with oyster glycogen, 25 mm for Pi with corn dextrin, and 20 mg/ml and 26 mg/ml for oyster glycogen and corn dextrin, respectively. Present data suggests no involvement of -SH groups in enzyme catalysis, while the enzyme was inhibited by divalent ions with the severest inhibition being observed with Ca2+, Zn2+ and Fe2+. The two ion chelators, EDTA and EGTA, had no effect on enzyme activity.  相似文献   

18.
Mutations at the ileA locus of Aspergillus nidulans can lead to loss of threonine dehydratase (l-threonine hydro-lyase (deaminating), EC 4.2.1.16), the first enzyme for isoleucine biosynthesis. A cold-sensitive allele, ileA-13, leads to production of an enzyme having an increased apparent Km for l-threonine and showing inhibition by l-valine at concentrations which slightly stimulate activity of the wild type enzyme. Hence, ileA codes for a structural component of threonine dehydratase. The ability of very high concentrations of l-threonine to supplement ileA-13 strains at non-permissive temperatures would suggest the auxotrophy conferred by ileA-13 results primarily from the increased apparent Km of the mutant enzyme for l-threonine.  相似文献   

19.
We have used the pH variation in the kinetic parameters with respect to malate of NADP-malic enzyme purified from the C4 species, Flaveria trinervia, to compare the pK values of its functional groups with those for the pigeon liver NADP-malic enzyme (MI Schimerlik, WW Cleland [1977] Biochemistry 16: 576-583) and the plant NAD-malic enzyme (KO Willeford, RT Wedding [1987] Plant Physiol 84: 1084-1087). Like the other enzymes, the C4 enzyme has a group with a pK of about 6.0 (6.6 for the C4 enzyme), as indicated from plots of the log Vmax/Km (Vmax = maximum rate of catalysis) versus pH, which must lose a proton for malate binding and subsequent catalysis. The optimum ionization for the C4 enzyme-NADP-Mg2+ complex occurs at pH 7.1 to 7.5. From pH 7.5 to 8.4, the Km increases, but Vmax remains constant. The log Vmax/Km plot in this pH range indicates a group with a pK of about 7.7. The other malic enzymes exhibit a similar pK. Above pH 8.4, deprotonation leads to a marked increase in Km and a decrease in Vmax for the C4 enzyme. As in the case of the animal enzyme, the log Vmax/Km plot for the C4 enzyme appears to approach a slope of two. The curve suggests an average pK of 8.4 for the groups involved, while the animal enzyme exhibits an average pK of 9.0. The NAD-malic enzyme does not exhibit any pK values at these high pK values. We hypothesize that the putative groups with the high pK values may be at least partially responsible for the ability of the C4 NADP-malic enzyme to maintain high activity at pH 8.0 in illuminated chloroplasts.  相似文献   

20.
The apoenzyme of diol dehydrase was inactivated by modification with pyridoxal 5′-phosphate (pyridoxal-P). The inactivation was accompanied by appearance of a new peak at 425 nm which was shifted to 325 nm by reduction with NaBH4. ?-N-Pyridoxyl lysine was detected by paper chromatography and paper electrophoresis from the hydrolysate of the NaBH4-reduced enzyme-pyridoxal-P complex. The relationship of inactivation vs pyridoxal-P incorporation as well as kinetic experiments suggests that one lysyl residue per enzyme molecule was essential for catalytic activity, although two to three pyridoxal-P molecules were introduced into the almost completely inactivated enzyme molecule. Both 1,2-propanediol (substrate) and adenosylcobalamin (coenzyme) completely protected the enzyme from inactivation. The result of disc gel electrophoresis showed that the inactivation of diol dehydrase by pyridoxal-P results from irreversible dissociation of the enzyme into subunits upon pyridoxal-P modification. Therefore, it is suggested that this modifiable lysyl residue is essential for subunit interaction to form an active oligomeric enzyme. The inactivated enzyme restored activity by addition of excess component F, but not by S, suggesting that the essential lysyl residue is located in component F of the enzyme. Pyridoxal-P-modified enzyme was no longer able to bind cyanocobalamin (a competitive inhibitor of adenosylcobalamin).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号