首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
张琛  王勇  张美文 《动物学杂志》2018,53(5):673-681
为了解东方田鼠(Microtus fortis)筑巢行为在不同环境条件下的适应性进化。在实验室内采用48 h等级法和连续144 h巢材获取重量法,比较了东方田鼠长江亚种(M. f. calamorumt)和指名亚种(M. f. fortis)筑巢行为。结果表明,东方田鼠指名亚种和长江亚种皆能主动获取巢材并建筑质量良好的巢,具有稳定的筑巢行为;东方田鼠两个亚种的筑巢行为在利用巢材能力(P < 0.01)和获取巢材能力(P < 0.05)上皆具有显著性差异;指名亚种雌雄个体在利用巢材(P < 0.05)和获取巢材的能力(P < 0.05)上皆具有显著差异,而长江亚种在这两个方面都不存在性别差异。  相似文献   

2.
Wang X  Wang J  He S  Mayden RL 《Gene》2007,399(1):11-19
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny.  相似文献   

3.
东方田鼠两亚种幼体生长特征参数的比较   总被引:3,自引:0,他引:3  
在相同驯养条件下同步测定东方田鼠(Microtus fortis)指名亚种和长江亚种幼体的生长特征参数。两亚种初生幼体表型特征无明显差异。采用Von Bertalanffy生长模型对两亚种幼体的体重、体长和尾长,以Logistic生长方程对后足长生长过程进行拟合与描述。指名亚种雄体渐近体重、体长和尾长均大于或显著大于长江亚种,雌体前者小于后者;两亚种在17~20 d体重均已产生性二型分化,长江亚种两性个体渐近体重、体长和尾长差值大于指名亚种。两亚种雌体体重、体长、尾长和后足生长速率均相应地大于雄体,体重生长曲线拐点出现时间、瞬时生长率曲线拐点出现时间较体长、尾长和后足长明显迟缓。两亚种两性个体的后足长生长速率要大于其体重、体长和尾长。结果表明,(1)雌体较雄体早熟;(2)雄性体重指名亚种大于长江亚种,雌体相反,指名亚种性二型现象较长江亚种明显;(3)后足长较体重、体长和尾长较早地达到成熟时的大小;(4)两亚种幼体性二型分化时间早于其性成熟过程。  相似文献   

4.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

5.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   

6.
Chen L  Zhang H H 《农业工程》2012,32(5):232-239
The complete mitochondrial genome sequence of the raccoon dog (Nyctereutes procyonoides) was determined by using the long and accurate polymerase chain reaction. The entire mitochondrial genome sequence is 16,713 bp in length contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and 1 control region. Most mitochondrial genes are encoded on the H strand, except for the ND6 gene and 8 tRNA genes. The base compositions of mitochondrial genomes present clearly A–T skew. All the transfer RNA genes can be folded into the typical cloverleaf-shaped structure except tRNA-Ser (AGY), which lacks the dihydrouridine arm. Protein-coding genes mainly initiate with ATG and terminate with TAA. Some reading frame intervals and overlaps are found in the mitochondrial genome. The control region can be divided into three domains: the extended termination associated sequences (ETASs) domain, the central conserved domain and the conserved sequence blocks (CSBs) domain. Three conserved sequence blocks (CSBs) and one extended termination associated sequences (ETAS-1) is found in the control region. The phylogenetic analysis based on the concatenated data set of 14 genes in the mitochondrial genome of Canidae shows that the raccoon dog has close phylogenetic position with the red fox (Vulpes vulpes) and they constitute a clade which has an equil evolutionary position with the clade formed by the genera Canis and Cuon.  相似文献   

7.
Dong Y  Sun H  Guo H  Pan D  Qian C  Hao S  Zhou K 《Gene》2012,505(1):57-65
Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans.  相似文献   

8.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

9.
X Wu  X Li  L Li  X Xu  J Xia  Z Yu 《Gene》2012,507(2):112-118
A feasible way to perform evolutionary analyses is to compare characters divergent enough to observe significant differences, but sufficiently similar to exclude saturation of the differences that occurred. Thus, comparisons of invertebrate mitochondrial (mt) genomes at low taxonomic levels can be extremely helpful in investigating patterns of variation and evolutionary dynamics of genomes, as intermediate stages of the process may be identified. Fortunately, in this study, we newly sequenced the mt genome of the eighth member of Asian Crassostrea oysters which can provide necessary intermediate characters for us to believe that the variation of Crassostrea mt genomes is considerably greater than previously acknowledged. Several new features of Asian Crassostrea oyster mitochondrial genomes were revealed, and our results are particularly significant as they 1) suggest a novel model of alloacceptor tRNA gene recruitment, namely "vertical" tRNA gene recruitment, which can be successfully used to explain the origination of the unusually additional trnK and trnQ genes (annotated as trnK(2) and trnQ(2) respectively) in the mt genomes of the five Asian oysters, and we speculate that this recruitment progress may be a common phenomenon in the evolution of the tRNA multigene family; 2) reveal the existence of two additional, lineage-specific, mtDNA-encoded genes that may originate from duplication of nad2 followed by rapid evolutionary change. Each of these two genes encodes a unique amino terminal signal peptide, thus each might possess an unknown function; and 3) identify for the first time the atp8 gene in oysters. The present study thus gives further credence to the comparison of congeneric bivalves as a meaningful strategy to investigate mt genomic evolutionary trends in genome organization, tRNA multigene family, and gene loss and/or duplication that are difficult to undertake at higher taxonomic levels. In particular, our study provides new evidence for the identification and characterization of ORFs in the "non-coding region" of animal mt genomes.  相似文献   

10.
Mackerels of the genus Scomber are commercially important species, but their taxonomic status is still controversial. Although previous phylogenetic data support the recognition of Atlantic Scomber colias and Pacific Scomber japonicus as separate species, it is only based on the analysis of partial mitochondrial and nuclear DNA sequences. In an attempt to shed light on this relevant issue, we have determined the complete mitochondrial DNA sequence of S. colias, S. japonicus, and Scomber australasicus. The total length of the mitogenomes was 16,568 bp for S. colias and 16,570 bp for both S. japonicus and S. australasicus. All mitogenomes had a gene content (13 protein-coding, 2 rRNAs, and 22 tRNAs) and organization similar to that observed in Scomber scombrus and most other vertebrates. The major noncoding region (control region) ranged between 865 and 866 bp in length and showed the typical conserved blocks. Phylogenetic analyses revealed a monophyletic origin of Scomber species with regard to other scombrid fish. The major finding of this study is that S. colias and S. japonicus were significantly grouped in distinct lineages within Scomber cluster, which phylogenetically constitutes evidence that they may be considered as separate species. Additionally, molecular data here presented provide a useful tool for evolutionary as well as population genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号