首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a “protein corona” onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density.  相似文献   

2.
The distribution of drug delivery systems into the body is affected by plasma proteins adsorbed onto their surface. Furthermore, an exact understanding of the structure and morphology of drug carriers is fundamental to understand their role as gene delivery systems. In this work, the adsorption of human plasma proteins bound to cationic liposomes and to their relative DNA lipoplexes was compared. A shotgun proteomics approach based on HPLC coupled to high resolution MS was used for an efficient identification of proteins adsorbed onto liposome and lipoplex surfaces. The distinct pattern of proteins adsorbed helps to better understand the DNA compaction process. The experimental evidence leads us to hypothesize that polyanionic DNA is associated to the lipoplex surface and can interact with basic plasma proteins. Such a finding is in agreement with recent results showing that lipoplexes are multilamellar DNA/lipid domains partially decorated with DNA at their surface. Proteomics experiments showed that the lipoplex corona is rich of biologically relevant proteins such as fibronectin, histones and complement proteins. Our results provide novel insights to understand how lipoplexes activate the immune system and why they are rapidly cleared from the blood stream. The differences in the protein adsorption data detected in the presented experiments could be the basis for the establishment of a correlation between protein adsorption pattern and in vivo fate of intravenously administered nanoparticles and will require some consideration in the future.  相似文献   

3.
Abstract

Cationic liposome (CL)-DNA complexes (lipoplexes) have appeared as leading nonviral gene carriers in worldwide gene therapy clinical trials. Arriving at therapeutic dosages requires the full understanding of the mechanism of transfection. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs have some problems, including low transfection efficiency. The aim of this study was developing novel CLs containing four neutral lipids; cholesterol, 1,2-dioleoyl phosphatidylethanolamine, distearoylphosphatidylcholine and dipalmitoylphosphatidylcholine as a helper lipid and dimethyl dioctadecyl ammonium bromide as a cationic lipid to increase transfection efficiency. We have investigated the correlation between number of lipid composition and transfection efficiency. The morphology, size and zeta potential of liposomes and lipoplexes were measured and lipoplexes formation was monitored by gel retardation assay. Transfection efficiency was assessed using firefly luciferase reporter assay. It was found that transfection efficiency markedly depended on liposome to plasmid DNA (pDNA) weight ratio, lipid composition and efficiency of pDNA entrapment. High transfection efficiency of plasmid by four component lipoplexes was achieved. Moreover, lipoplexes showed lower transfection efficiency and less cytotoxicity compared to Lipofectamine?. These results suggest that lipid composition of nanoliposomes is an important factor in control of their physical properties and also yield of transfection.  相似文献   

4.
Serum has often been reported as a barrier to efficient lipid-mediated transfection. Here we found that the transfection efficiency of DC-Chol-DOPE/DNA lipoplexes increases in serum. To provide insight into the mechanism of lipoplex-serum interaction, several state-of-the-art methodologies have been applied. The nanostructure of DC-Chol-DOPE/DNA lipoplexes was found to be serum-resistant as revealed by high resolution synchrotron small angle X-ray scattering, while dynamic light scattering measurements showed a marked size increase of complexes. The structural stability of DC-Chol-DOPE/DNA lipoplexes was confirmed by electrophoresis on agarose gel demonstrating that plasmid DNA remained well protected by lipids. Proteomics experiments showed that serum proteins competed for the cationic surface of lipid membranes leading to the formation of a rich a ‘protein corona’. Combining structural results with proteomics findings, we suggest that such a protein corona can promote large aggregation of intact lipoplexes. According to a recently proposed size-dependent mechanism of lipoplex entry within cells, protein corona-induced formation of large aggregates most likely results in a switch from a clathrin-dependent to caveolae-mediated entry pathway into the cells which is likely to be responsible for the observed transfection efficiency boost. As a consequence, we suggest that surface adsorption of protein corona can have a high biological impact on serum-resistant cationic formulations for in vitro and in vivo lipid-mediated gene delivery applications.  相似文献   

5.

Colloidal nanoparticles (NPs) interact with biological fluids such as human plasma to form a protein coating (corona) on the surface of NPs (NP-protein complex). However, the impact of size and type of NPs on binding of the hard corona to the surface of NPs as well as damping of their optical spectra has not been systematically explored. To elucidate the interaction between biological environment (human plasma) and NPs, a photophysical measurement was conducted to quantify the interaction of two different types of NPs (gold (Au) and silver (Ag)) with common human plasma proteins. The colloidal AuNPs and AgNPs were electrostatically stabilized and varied in diameter from 10 to 80 nm in the presence of common human plasma. The sizes of the NPs were determined using transmission electron microscopy (TEM). Optical absorption spectra were obtained for the complexes. Dynamic light scattering (DLS) measurement and zeta potential were used to characterize the sizes, hydrodynamic diameters, and surface charges of the protein-NPs complexes. Protein separation was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to isolate and identify the protein bands. The absorption of proteins to the NPs was found to be strongly dependent on the size and type of NPs. The distance between surface of NPs by absorbed protein bound to the NPs gradually increased with size of NPs, particularly for AgNPs with primary diameter of < 50 nm. The chi-square test proved that AgNPs are a good candidate in sensing the protein complex in human plasma compared with AuNPs mainly for the AgNPs with diameter sized 50 nm.

  相似文献   

6.
In the circulation, most of the insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases are bound in high molecular mass complexes of > or =150 kDa. To investigate molecular interactions between proteins involved in IGF.IGFBP complexes, Cohn fraction IV of human plasma was subjected to IGF-II affinity chromatography followed by reversed-phase high pressure liquid chromatography and analysis of bound proteins. Mass spectrometry and Western blotting revealed the presence of IGFBP-3, IGFBP-5, transferrin, plasminogen, prekallikrein, antithrombin III, and the soluble IGF-II/mannose 6-phosphate receptor in the eluate. Furthermore, an IGFBP-3 protease cleaving also IGFBP-2 but not IGFBP-4 was co-purified from the IGF-II column. Inhibitor studies and IGFBP-3 zymography have demonstrated that the 92-kDa IGFBP-3 protease belongs to the class of serine-dependent proteases. IGF-II ligand blotting and surface plasmon resonance spectrometry have been used to identify plasminogen as a novel high affinity IGF-II-binding protein capable of binding to IGFBP-3 with 50-fold higher affinity than transferrin. In combination with transferrin, the overall binding constant of plasminogen/transferrin for IGF-II was reduced 7-fold. Size exclusion chromatography of the IGF-II matrix eluate revealed that transferrin, plasminogen, and the IGFBP-3 protease are present in different high molecular mass complexes of > or =440 kDa. The present data indicate that IGFs, low and high affinity IGFBPs, several IGFBP-associated proteins, and IGFBP proteases can interact, which may result in the formation of binary, ternary, and higher molecular weight complexes capable of modulating IGF binding properties and the stability of IGFBPs.  相似文献   

7.
We investigated the mode of interaction of lipoplexes (DOTAP:DOPE/DNA) with HeLa cells, focusing on the analysis of the initial steps involved in the process of gene delivery. We evaluated the effect of different factors, namely the stoichiometry of cationic lipids and DNA, the presence of serum in the cell culture medium, and the incorporation of the ligand transferrin into the lipoplexes, on the extent of binding, association and fusion (lipid mixing) of the lipoplexes with the cells. Parallel experiments were performed upon cell treatment with inhibitors of endocytosis. Our results indicate that a decrease of the net charge of the complexes (upon addition of DNA) generally leads to a decrease in the extent of binding, cell association and fusion, except for the neutral complexes. Association of transferrin to the lipoplexes resulted in a significant enhancement of the interaction processes referred to above, which correlates well with the promotion of transfection observed under the same conditions. Besides triggering internalization of the complexes, transferrin was also shown to mediate fusion with the endosomal membrane. The extent of fusion of this type of complexes was reduced upon their incubation with cells in the presence of serum, suggesting that serum components limit the transferrin fusogenic properties. Results were analyzed by using a theoretical model which allowed to estimate the kinetic parameters involved in lipoplex–cell interactions. The deduced fusion and endocytosis rate constants are discussed and compared with those obtained for other biological systems. From the kinetic studies we found a twofold enhancement of the fusion rate constant (f) for the ternary lipoplexes. We also concluded that HeLa cells yield a relatively low rate of endocytosis. Overall, our results estimate the relative contribution of fusion of lipoplexes with the plasma membrane, endocytosis and fusion with the endosomal membrane to their interactions with cells, this information being of crucial importance for the development of gene therapy strategies.  相似文献   

8.
Lipid-protein complexes, lipoplexes, are currently of great interest because of their immunogenic, gene free, and low cost properties. For their applications as potential vaccines, it is critical to display a target protein on the surface of lipoplex particles to allow external interactions to take place. However, how to effectively assemble lipoplexes with target proteins externally accessible is a constant challenge. In this study, human liver fatty acid binding protein 1 (hl-FABP1) was used as a model protein in lipoplex assembly with a non-lipid binding protein, bovine serum albumin (BSA), serving as a comparison. The protein-lipid particles were assembled by four different processes and characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), flow cytometry (FCM), and a modified ELISA. Results indicate that by incubating the target protein with pre-formed liposomes at a temperature higher than all transition temperatures (Tm) of the lipids used through an extended period of time, 1.48 × 10−6 nmol per lipoplex of incorporated proteins can be detected by ELISA and are externally accessible. Additional experiments showed that most of those externally accessible proteins are likely embedded in the lipid bilayer structure and are not subject to dissociation from the lipoplex particles at elevated salt concentrations.  相似文献   

9.
Nanoparticle (NP) exposure to biological fluids in the body results in protein binding to the NP surface, which forms a protein coating that is called the “protein corona”. To simplify studies of protein–NP interactions and protein corona formation, NPs are incubated with biological solutions, such as human serum or human plasma, and the effects of this exposure are characterized in vitro. Yet, how NP exposure to these two different biological milieus affects protein corona composition and cell response has not been investigated. Here, we explore the differences between the protein coronas that form when NPs are incubated in human serum versus human plasma. NP characterization indicated that NPs that were exposed to human plasma had higher amounts of proteins bound to their surfaces, and were slightly larger in size than those exposed to human serum. In addition, significant differences in corona composition were also detected with gel electrophoresis and liquid chromatography–mass spectrometry/mass spectrometry, where a higher fraction of coagulation proteins and complement factors were found on the plasma-exposed NPs. Flow cytometry and confocal microscopy showed that the uptake of plasma-exposed NPs was higher than that of serum-exposed NPs by RAW 264.7 macrophage immune cells, but not by NIH 3T3 fibroblast cells. This difference is likely due to the elevated amounts of opsonins, such as fibrinogen, on the surfaces of the NPs exposed to plasma, but not serum, because these components trigger NP internalization by immune cells. As the human plasma better mimics the composition of the in vivo environment, namely blood, in vitro protein corona studies should employ human plasma, and not human serum, so the biological phenomena that is observed is more similar to that occurring in vivo.  相似文献   

10.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed primarily by electrostatic interactions, whereas their fusion is regulated by the lipid composition and sterically favorable interactions with cell surface molecules. In addition our results indicate no correlation between fusion of the lipoplexes with the plasma membrane and the levels of transfection.  相似文献   

11.
The specificity of the binding of purified non-histone proteins to DNA has been investigated through two types of experiments. Using a nitrocellulose filter assay at a low protein/DNA ratio, the binding of mouse non-histone proteins to mouse DNA was twice as great as the binding of mouse non histone protein to Drosophila DNA. The reverse experiment using Drosophila non-histone protein confirmed the interpretation that some protein . DNA complexes were specific. Protein . DNA complexes isolated by gel filtration chromatography indicated that 20% or 10% of the non-histone protein was bound to homologous or heterologous DNA respectively. Purified non-histone proteins bound with lower efficiency (15%) than unpurified but with higher specificity to soluble chromatin than to naked DNA. This binding did not result from an exchange between chromatin non-histone proteins and purified non-histone proteins added in excess. DNA-bound and chromatin-bound proteins were analysed on polyacrylamide gels. Whereas no major qualitative differences were observed with DNA-bound proteins, some proteins bound to homologous mouse chromatin were different from those bound to heterologous Drosophila chromatin. These results suggest a possible role of DNA-bound non-histone proteins in the regulation of gene expression.  相似文献   

12.
We investigated the mode of interaction of lipoplexes (DOTAP:DOPE/DNA) with HeLa cells, focusing on the analysis of the initial steps involved in the process of gene delivery. We evaluated the effect of different factors, namely the stoichiometry of cationic lipids and DNA, the presence of serum in the cell culture medium, and the incorporation of the ligand transferrin into the lipoplexes, on the extent of binding, association and fusion (lipid mixing) of the lipoplexes with the cells. Parallel experiments were performed upon cell treatment with inhibitors of endocytosis. Our results indicate that a decrease of the net charge of the complexes (upon addition of DNA) generally leads to a decrease in the extent of binding, cell association and fusion, except for the neutral complexes. Association of transferrin to the lipoplexes resulted in a significant enhancement of the interaction processes referred to above, which correlates well with the promotion of transfection observed under the same conditions. Besides triggering internalization of the complexes, transferrin was also shown to mediate fusion with the endosomal membrane. The extent of fusion of this type of complexes was reduced upon their incubation with cells in the presence of serum, suggesting that serum components limit the transferrin fusogenic properties. Results were analyzed by using a theoretical model which allowed to estimate the kinetic parameters involved in lipoplex--cell interactions. The deduced fusion and endocytosis rate constants are discussed and compared with those obtained for other biological systems. From the kinetic studies we found a twofold enhancement of the fusion rate constant (f) for the ternary lipoplexes. We also concluded that HeLa cells yield a relatively low rate of endocytosis. Overall, our results estimate the relative contribution of fusion of lipoplexes with the plasma membrane, endocytosis and fusion with the endosomal membrane to their interactions with cells, this information being of crucial importance for the development of gene therapy strategies.  相似文献   

13.
The common structural alterations in the cell-surface glycoproteins concern the highly elevated expression of tri- and tetra-antennary β1–6-N-acetylglucosamine (β1–6 GlcNAc) bearing N-glycans, which are recognised by Phaseolus vulgaris agglutinin (PHA-L). In this report we identified proteins bearing β1–6 GlcNAc branched N-glycans in three human melanoma cell lines: WM35 — from the primary tumour site, as well as WM239 and WM9 from different metastatic sites: the skin and the lymph node, respectively, by tandem mass spectrometry (MS/MS) on PHA-L agarose bound material, followed by immunochemical identification. Our results show that melanoma cell lines differ from each other in the number of N-glycoproteins bearing β1–6 GlcNAc branched oligosaccharides. Among identified proteins the largest group consists of integrin subunits. In addition, L1-CAM, Mac-2 binding protein, melanoma cell adhesion molecule, intercellular adhesion molecule, melanoma associated antigen, tumour rejection antigen-1, melanoma-associated chondroitin sulfate proteoglycan 4 and lysosome-associated membrane protein (LAMP-1) were found. It was indicated that WM35 cell line showed the lowest number of proteins possessing β1–6 GlcNAc branched N-glycans in comparison to metastatic WM9 and WM239 cell lines. Our data suggest that changes in the number of proteins being a substrate for GlcNAc-TV are better correlated with melanoma development and progression than with expression of cell adhesion molecules.  相似文献   

14.
Protein ubiquitination plays an important role in the regulation of many cellular processes, including protein degradation, cell cycle regulation, apoptosis, and DNA repair. To study the ubiquitin proteome we have established an immunoaffinity purification method for the proteomic analysis of endogenously ubiquitinated protein complexes. A strong, specific enrichment of ubiquitinated factors was achieved using the FK2 antibody bound to protein G-beaded agarose, which recognizes monoubiquitinated and polyubiquitinated conjugates. Mass spectrometric analysis of two FK2 immunoprecipitations (IPs) resulted in the identification of 296 FK2-specific proteins in both experiments. The isolation of ubiquitinated and ubiquitination-related proteins was confirmed by pathway analyses (using Ingenuity Pathway Analysis and Gene Ontology-annotation enrichment). Additionally, comparing the proteins that specifically came down in the FK2 IP with databases of ubiquitinated proteins showed that a high percentage of proteins in our enriched fraction was indeed ubiquitinated. Finally, assessment of protein–protein interactions revealed that significantly more FK2-specific proteins were residing in protein complexes than in random protein sets. This method, which is capable of isolating both endogenously ubiquitinated proteins and their interacting proteins, can be widely used for unraveling ubiquitin-mediated protein regulation in various cell systems and tissues when comparing different cellular states.  相似文献   

15.
The binding of l-tryptophan and bilirubin by plasma proteins from a variety of animals has been studied. Bilirubin was bound by plasma protein(s) from all animals investigated. l-Tryptophan, on the other hand, was bound only by plasma protein(s) from warm-blooded animals. Our results in vertebrates are consistent with serum albumin being the binding protein concerned.  相似文献   

16.
We report on new insights into the mechanisms of short single and double stranded oligonucleotide release from cationic lipid complexes (lipoplexes), used in gene therapy. Specifically, we modeled endosomal membranes using giant unilamellar vesicles and investigated the roles of various individual cellular phospholipids in interaction with lipoplexes. Our approach uses a combination of confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking, revealing several new aspects of the release: (a) phosphatidylserine and phosphatidylethanolamine are equally active in disassembling lipoplexes, while phosphatidylcholine and sphingomyelin are inert; (b) in contrast to earlier findings, phosphatidylethanolamine alone, in the absence of anionic phosphatidylserine triggers extensive release; (c) a double-stranded DNA structure remains well preserved after release; (d) lipoplexes exhibited preferential binding to transient lipid domains, which appear at the onset of lipoplex attachment to originally uniform membranes and vanish after initiation of polynucleotide release. The latter effect is likely related to phosphatidyleserine redistribution in membranes due to lipoplex binding. Real time tracking of single DOTAP/DOPE and DOTAP/DOPC lipoplexes showed that both particles remained compact and associated with membranes up to 1-2 min before fusion, indicating that a more complex mechanism, different from suggested earlier rapid fusion, promotes more efficient transfection by DOTAP/DOPE complexes.  相似文献   

17.
The low density lipoprotein receptor‐related protein 1 (LRP1) mediates internalization of a large number of proteins and protein–lipid complexes and is widely implicated in Alzheimer's disease. The cytoplasmic domain of LRP1 (LRP1‐CT) can be phosphorylated by activated protein‐tyrosine kinases at two NPXY motifs in LRP1‐CT; Tyr 4507 is readily phosphorylated and must be phosphorylated before phosphorylation of Tyr 4473 occurs. Pull‐down experiments from brain lysate revealed numerous proteins binding to LRP1‐CT, but the results were highly variable. To separate which proteins bind to each NPXY motif and their phosphorylation dependence, each NPXY motif microdomain was prepared in both phosphorylated and non‐phosphorylated forms and used to probe rodent brain extracts for binding proteins. Proteins that bound specifically to the microdomains were identified by LC‐MS/MS, and confirmed by Western blot. Recombinant proteins were then tested for binding to each NPXY motif. The NPXY4507 (membrane distal) was found to interact with a large number of proteins, many of which only bound the tyrosine‐phosphorylated form. This microdomain also bound a significant number of other proteins in the unphosphorylated state. Many of the interactions were later confirmed to be direct with recombinant proteins. The NPXY4473 (membrane proximal) bound many fewer proteins and only to the phosphorylated form.  相似文献   

18.
Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive. Here we compared all-atom molecular dynamics simulations on bovine AAC1 in lipid bilayers with and without CLs. Our results show that on the current microsecond simulation time scale: 1) CL binding does not significantly affect overall stability of the carrier or structural symmetry at the matrix-gate level; 2) pocket volumes of the carrier and interactions involved in the matrix-gate network become more heterogeneous in parallel simulations with membranes containing CLs; 3) CL binding consistently strengthens backbone hydrogen bonds within helix H2 near the matrix side; and 4) CLs play a consistent stabilizing role on the domain 1-2 interface through binding with the R30:R71:R151 stacking structure and fixing the M2 loop in a defined conformation. CL is necessary for the formation of this stacking structure, and this structure in turn forms a very stable CL binding site. Such a delicate equilibrium suggests the strictly conserved R30:R71:R151stacking structure of AACs could function as a switch under regulation of CLs. Taken together, these results shed new light on the CL-mediated modulation of AAC function.  相似文献   

19.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

20.
We report on new insights into the mechanisms of short single and double stranded oligonucleotide release from cationic lipid complexes (lipoplexes), used in gene therapy. Specifically, we modeled endosomal membranes using giant unilamellar vesicles and investigated the roles of various individual cellular phospholipids in interaction with lipoplexes. Our approach uses a combination of confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking, revealing several new aspects of the release: (a) phosphatidylserine and phosphatidylethanolamine are equally active in disassembling lipoplexes, while phosphatidylcholine and sphingomyelin are inert; (b) in contrast to earlier findings, phosphatidylethanolamine alone, in the absence of anionic phosphatidylserine triggers extensive release; (c) a double-stranded DNA structure remains well preserved after release; (d) lipoplexes exhibited preferential binding to transient lipid domains, which appear at the onset of lipoplex attachment to originally uniform membranes and vanish after initiation of polynucleotide release. The latter effect is likely related to phosphatidyleserine redistribution in membranes due to lipoplex binding. Real time tracking of single DOTAP/DOPE and DOTAP/DOPC lipoplexes showed that both particles remained compact and associated with membranes up to 1-2 min before fusion, indicating that a more complex mechanism, different from suggested earlier rapid fusion, promotes more efficient transfection by DOTAP/DOPE complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号