首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Tank cultivation of marine macroalgaeinvolves air-agitation of the algal biomassand intermittent light conditions,i.e.periodic, short light exposure of thethalli in the range of 10 s at the watersurface followed by plunging to low lightor darkness at the tank bottom andrecirculation back to the surface in therange of 1–2 min. Open questions relate toeffects of surface irradiance on growthrate and yield in such tumble cultures andthe possibility of chronic photoinhibitionin full sunlight. A specially constructedshallow-depth tank combined with a darktank allowed fast circulation times ofapproximately 5 s, at a density of 4.2 kgfresh weight (FW) m-2s-1. Growthrate and yield of the red alga Palmaria palmata increased over a widerange of irradiances, with no signs ofchronic photoinhibition, up to agrowth-saturating irradiance ofapproximately 1600 mol m-2s-1 in yellowish light supplied by asodium high pressure lamp at 16 h light perday. Maximum growth rate ranged at 12% FWd-1, and maximum yield at 609 gFW m-2 d-1. This shows that highgrowth rates of individual thalli may bereached in a dense tumble culture, if highsurface irradiances and short circulationtimes are supplied. Another aspect ofintermittent light relates to possiblechanges of basic growth kinetics, ascompared to continuous light. For thispurpose on-line measurements of growth ratewere performed with a daily light reductionby 50% in light-dark cycles of 1, 2 or 3min duration during the daily light period.Growth rates at 10 °C and 50 molphoton m-2 s-1 dropped in allthree intermittent light regimes duringboth the main light and dark periods andreached with all three periodicitiesapproximately 50% of the control , with noapparent changes in basic growth kinetics,as compared to continuous light.  相似文献   

2.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

3.
Loss of quantum yield in extremely low light   总被引:2,自引:0,他引:2  
Kirschbaum MU  Ohlemacher C  Küppers M 《Planta》2004,218(6):1046-1053
It has generally been assumed that the photosynthetic quantum yield of all C3 plants is essentially the same for all unstressed leaves at the same temperature and CO2 and O2 concentrations. However, some recent work by H.C. Timm et al. (2002, Trees 16:47–62) has shown that quantum yield can be reduced for some time after leaves have been exposed to darkness. To investigate under what light conditions quantum yield can be reduced, we carried out a number of experiments on leaves of a partial-shade (unlit greenhouse)-grown Coleus blumei Benth. hybrid. We found that after leaves had been exposed to complete darkness, quantum yield was reduced by about 60%. Only very low light levels were needed for quantum yield to be fully restored, with 5 mol quanta m–2 s–1 being sufficient for 85% of the quantum yield of fully induced leaves to be achieved. Leaves regained higher quantum yields upon exposure to higher light levels with an estimated time constant of 130 s. It was concluded that the loss of quantum yield would be quantitatively important only for leaves growing in very dense understoreys where maximum light levels might not exceed 5 mol quanta m–2 s–1 even in the middle of the day. Most leaves, even in understorey conditions, do, however, experience light levels in excess of 5 mol quanta m–2 s–1 over periods where they obtain most of their carbon so that the loss of quantum yield would affect total carbon gain of those leaves only marginally.Abbreviations FBPase Fructose-1,6-bisphosphatase - RuBP Ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase  相似文献   

4.
Atriplex gmelini plants were regenerated via organogensis from hypocotyl explants. Callus lines were induced from the hypocotyl explants on Linsmaier and Skoog (LS) medium supplemented with 1 M benzyladenine and 5 M -naphthaleneacetic acid in the dark. Shoots were regenerated from the callus lines on LS medium supplemented with 20 M thidiazuron and 0.1 M -naphthaleneacetic acid under a high-intensity light condition (450 mol m–2 s–1). The regenerated shoots were rooted on LS medium without growth regulators to obtain fully developed plants. We succeeded in transforming Atriplex gmelini from callus lines using Agrobacterium tumefaciens.  相似文献   

5.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

6.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

7.
When Porphyridium cruentum cells were illuminated with high fluence rate between 1900 and 4800 mol photons m-2s-1, a decrease in the photosynthetic activity of the cells was observed. Within the time frame of 20 min, and under the fluence rates studied, the sum of photons to be absorbed by cells (mg of chlorophyll (Chl), sufficient to initiate photoinhibition was calculated to be 9235.8 mol. The minimal specific light absorption rate to initiate photoinhibition in P. cruentum ranges between 2.29 and 4.26 mol photons s-1 mg-1 chl.a. There was a linear relationship between the specific rate of photoinhibition and the specific light absorption rate. A photon number of 2.56×104 mol mg-1 chl.a photoinhibited photosynthesis instantaneously. At 15°C, no photoinhibitory effect was observed at 2300 mol photons m-2 s-1 even after 45 min of illumination. At the other extreme of 35°C, 84% inhibition of photosynthetic activity was observed within 10 min of exposure to 2300 mol photons m-2 s-1. Between 20 and 30°C, the photoinhibitory effect was comparable. Photoinhibited P. cruentum cells recovered readily when transferred to low light (90 mol photons m-2 s-1) and darkness, and the specific rate of recovery was independent of the light intensity to which the cells were exposed, during the photoinhibitory treatment.Abbreviations Chlorophyll QL, specific light absorption rate Publication No. 28 of the Microalgal Biotechnology Laboratory  相似文献   

8.
Effect of quality, quantity and minimum duration of light on the process of recovery was investigated in the photoinhibited cells of the green alga Chlamydomonas reinhardtii. Complete and rapid reactivation of photosynthesis took place in diffuse white light of 25 mol m–2 s–1. The recovery was partial (< 10%) in the dark. Far red (725 nm), red (660 nm) and blue light (480 nm) in the range of 10 to 75 mol m–2 s–1 did not enhance the process of reactivation. Photoinhibited cells incubated in dark for 15 min when exposed for 5 min to diffuse light (25 mol m–2 s–1) showed complete reactivation. Even exposure of 15 min dark incubated photoinhibited cells to photoinhibitory light (2500 mol m–2 s–1) for 5 s fully regained the photosynthesis. The study indicated a very precise and triggering effect of light in the process of reactivation. The dark respiratory inhibitor KCN and uncouplers FCCP and CCCP increased the susceptibility of C. reinhardtii to photoinhibition and also prevented photoinhibited cells to reactivate fully even after longer period of incubation under suitable reactivating conditions. Of the various possibilities envisaged to assign the role of dark respiration in recovery process, supply of ATP by mitochondrial respiration appeared sound and pertinent.Abbreviations CCCP- carbonyl cyanide m-chlorophenylhydrazone - D1- 32 kDa protein of PS II reaction center - FCCP- carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - KCN- potassium cyanide - PBQ- phenyl-p-benzoquinone - PFD- photon flux density - SHAM- salicylhydroxamic acid NBRI Research Publication No. 431.  相似文献   

9.
This study reports the effects of light availability during the acclimatization phase on photosynthetic characteristics of micropropagated plantlets of grapevine (Vitis vinifera L.) and of a chestnut hybrid (Castanea sativa × C. crenata). The plantlets were acclimatized for 4 weeks (grapevine) or 6 weeks (chestnut), under two irradiance treatments, 150 and 300 mol m–2 s–1 after in vitro phases at 50 mol m–2 s–1. For both treatments and both species, leaves formed during acclimatization (so-called `new leaves') showed higher photosynthetic capacity than the leaves formed in vitro either under heterotrophic or during acclimatization (so-called `persistent leaves'), although lower than leaves of young potted plants (so-called `greenhouse leaves'). In grapevine, unlike chestnut, net photosynthesis and biomass production increased significantly with increased light availability. Several parameters associated with chlorophyll a fluorescence indicated photoinhibition symptoms in chestnut leaves growing at 300 mol m–2 s–1. The results taken as a whole suggest that 300 mol m–2 s–1 is the upper threshold for acclimatization of chestnut although grapevine showed a better response than chestnut to an increase in light.  相似文献   

10.
J. Nossag  W. Kasprik 《Planta》1984,160(3):217-221
Prostrate cells of Micrasterias thomasiana Archer were irradiated from above with intensive blue light. Many of the cells reacted by rising to a profile position. During a period of 15 to 90 min the response is linearly dependent on the duration of irradiation, inferred from the number of rising cells. In a range from 10 to 30 mol m-2 s-1 (equalling 2.7–8.0 W m-2 at a wavelength of 450 nm) and for an irradiation time of 30 min, the rising reaction was linearly dependent on the quantum flux density. Choosing 30 min irradiation time and a quantum flux density of 30 mol m-2 s-1, the reactive number of rising cells was employed in establishing an action spectrum. As a result of this, a flavin is postulated as the light-percepting pigment in the reaction, whereas chlorophylls do not appear to be involved. The rising reaction can be distinguished from other light-induced movements as a strong-light response, resembling in this respect the movement of chloroplasts within cells. The different sensitivity of individual cells and the importance of this strong-light response for the algal cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号