首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phylogenetic analyses for 10 rodent Eimeria species from different host genera based on plastid ORF470 and nuclear 18S rDNA sequences were done to infer the evolutionary relationships of these rodent Eimeria species and their correlation to morphology and host specificity. The phylogenies based on both data sets clearly grouped the 10 rodent Eimeria species into two major lineages, which reflect more their morphological differences than host specificity. Species in lineage A have spheroidal to subspheroidal sporulated oocysts, are similar in size (18-29 x 17-23; xbar = 22 x 20 microm), have an oocyst residuum and one-two polar granules; these include Eimeria albigulae (Neotoma), Eimeria arizonensis (Peromyscus, Reithrodontomys), Eimeria onychomysis (Onychomys) and Eimeria reedi (Perognathus). Species in lineage B, including Eimeria falciformis (Mus), Eimeria langebarteli (Reithrodontomys), Eimeria nieschulzi (Rattus), Eimeria papillata (Mus), Eimeria separata (Rattus) and Eimeria sevilletensis (Onychomys) have different shapes (ovoid, ellipsoid, elongated ellipsoid, etc.), differ greatly in size (10-27 x 9-24; xbar = 19 x 16 microm) and all lack an oocyst residuum. Thus, The oocyst residuum was the most determinant feature that differentiated the two lineages. The accession numbers of ORF470 of E. albigulae, E. arizonensis, E. falciformis, E. nieschulzi, E. onychomysis, E. papillata, E. reedi, E. separata, E. sevilletensis, E. langebarteli are AF311630-AF311639 and 18S rDNA of E. langebarteli, E. papillata, E. reedi, E. separata, E. sevilletensis are AF311640-AF311644.  相似文献   

2.
Poplstein M  Vrba V 《Parasitology》2011,138(10):1211-1216
Although oocyst morphology was always considered as a reliable parameter for coccidian species discrimination we describe strain variation of turkey coccidia, Eimeria adenoeides, which remarkably exceeds the variation observed in any other Eimeria species. Two strains have been isolated - the first strain maintains the typical oocyst morphology attributed to this species - large and ellipsoidal - while the second strain has small and ovoid oocysts, never described before for this species. Other biological parameters including pathogenicity were found to be similar. Cross-protection between these 2 strains in 2 immunization and challenge experiments was confirmed. Sequencing and analysis of 18S and ITS1 ribosomal DNA revealed a close relationship according to 18S and a relatively distant relationship according to ITS1. Analysis of 18S and ITS1 sequences from commercial turkey coccidiosis vaccines Immucox?-T and Coccivac?-T revealed that each vaccine contains a different strain of E. adenoeides and that these strains have 18S and ITS1 sequences homologous to the sequences of the strains we have isolated and described. These findings show that diagnostics of turkey coccidia according to oocyst morphology have to be carried out with caution or abolished entirely. Novel PCR-based molecular tools will be necessary for fast and reliable species discrimination.  相似文献   

3.
The influence of host genotype on susceptibility to infection with Eimeria species has long been recognised, but beyond monitoring pathological severity or magnitude of oocyst excretion attempts to quantify fluctuations in parasite reproduction within the host have previously relied upon labour-intensive microscopic analysis. The development and application of a quantitative real-time PCR assay has opened this biological 'black box', permitting the sensitive and reproducible enumeration of parasite genomes throughout the course of infection. Generic and species-specific quantitative PCR methods are described, based upon the conserved 5S ribosomal RNA coding sequence of nine avian and murine Eimeria species and the Eimeria maxima MIC1 gene, respectively. These complementary assays have been applied to study the influence of host genotype on resistance to infection with E. maxima, revealing significant differences in parasite load between 'resistant' Line C and 'susceptible' Line 15I inbred chickens 5 days after infection. Parasite DNA remained detectable up to 20 days post-infection; 11 days after the last oocysts had been detected leaving the host.  相似文献   

4.
Monophyly of all 11 valid Eimeria species from rabbits (Oryctolagus cuniculus Linnaeus, 1758) was revealed based on nuclear 18S rDNA sequence data. This finding implies that these species, which vary considerably in terms of their morphology and biology, diversified on a single host or several closely related species. Phylogenetic analysis divided rabbit Eimeria species into 2 sister lineages, corresponding to the presence/absence of the oocyst residuum. Other morphological or biological traits (oocyst shape and size, presence/absence of oocyst inner structures, pathogenicity, infection site, pre-patent and patent periods, sporulation time, and number of asexual generations) do not explicitly correlate with the phylogeny of rabbit coccidia.  相似文献   

5.
The genus Euduboscquella is one of a few described genera within the syndinean dinoflagellates, an enigmatic lineage with abundant diversity in marine environmental clone libraries based on small subunit (SSU) rRNA. The region composed of the SSU through to the partial large subunit (LSU) rRNA was determined from 40 individual tintinnid ciliate loricae infected with Euduboscquella sampled from eight surface water sites in the Northern Hemisphere, producing seven distinct SSU sequences. The corresponding host SSU rRNA region was also amplified from eight host species. The SSU tree of Euduboscquella and syndinean group I sequences from environmental clones had seven well-supported clades and one poorly supported clade across data sets from 57 to 692 total sequences. The genus Euduboscquella consistently formed a supported monophyletic clade within a single subclade of group I sequences. For most parasites with identical SSU sequences, the more variable internal transcribed spacer (ITS) to LSU rRNA regions were polymorphic at 3 to 10 sites. However, in E. cachoni there was variation between ITS to LSU copies at up to 20 sites within an individual, while in a parasite of Tintinnopsis spp., variation between different individuals ranged up to 19 polymorphic sites. However, applying the compensatory base change model to the ITS2 sequences suggested no compensatory changes within or between individuals with the same SSU sequence, while one to four compensatory changes between individuals with similar but not identical SSU sequences were found. Comparisons between host and parasite phylogenies do not suggest a simple pattern of host or parasite specificity.  相似文献   

6.
Abundance of intestinal parasites was monitored by fecal egg and oocyst counts for samples of wild rabbits Oryctolagus cuniculus with different levels of imposed female sterility from 12 populations in southwestern Australia. Differences in egg counts of Trichostrongylus retortaeformis between seasons and age groups were dependent on the sex of the host. Pregnancy may have been responsible for these differences because egg counts were consistently higher in intact females than in females surgically sterilized by tubal ligation. Egg counts for Passalurus ambiguus were influenced by season and host age but there were no differences between sexes or between intact and sterilized female rabbits. No differences were detected in the oocyst counts of the 8 species of Eimeria between male and female rabbits or between intact and sterilized females. Seasonal differences were detected in oocyst counts of Eimeria flavescens and Eimeria stiedai. The overwhelming determinant of coccidian oocyst counts was host age, with 6 species being much more abundant in rabbits up to 4 mo of age. There was a suggestion that egg counts of T. retortaeformis and oocyst counts of several species of Eimeria were reduced in populations where rabbit numbers had been depressed for at least 2 yr, but there was no evidence that short-term variations in rabbit numbers had a measurable effect on parasite abundance.  相似文献   

7.
Faecal samples from 514 kangaroos and wallabies representing 12 species of the genus Macropus were examined for oocysts of Eimeria spp. Six species of Eimeria were redescribed from their type hosts, and on the basis of finding homologous oocysts in the faeces of other Macropus spp., host ranges for these coccidia were extended. Eimeria hestermani Mykytowycz, 1964 is redescribed from M. giganteus (eastern grey kangaroo) and is described from M. fuliginosus (western grey kangaroo), M. rufogriseus (red-necked wallaby), M. dorsalis (black-striped wallaby), and M. eugenii (tammar wallaby). E. toganmainensis Mykytowycz, 1964 is redescribed from M. rufus (red kangaroo) and the host range is extended to M. giganteus, M. fuliginosus, M. rufogriseus and M. eugenii. E. wilcanniensis Mykytowycz, 1964 is redescribed from M. rufus, and the host range is extended to M. giganteus, M. fuliginosus and M. robustus (euro or wallaroo). E. macropodis Wenyon & Scott, 1925 is redescribed from M. rufogriseus, and is described from M. giganteus, M. fuliginosus, M. rufus, M. irma (western brush wallaby), M. parryi (whip-tailed wallaby), M. dorsalis, M. eugenii, and M. parma (parma wallaby). E. fausti Yakimoff & Matschoulsky, 1936, E. cunnamullensis Mykytowycz, 1964 and E. purchasei Mykytowycz, 1964 are synonymized with E. macropodis. E. marsupialium Yakimoff & Matschoulsky, 1936 is redescribed from M. giganteus, and from M. fuliginosus. E. gungahlinensis Mykytowycz, 1964 is redescribed from M. fuliginosus, and from M. giganteus. Seven new species of Eimeria are described. E. flindersi, new species, is described from M. eugenii, M. rufogriseus, and M. antilopinus (antilopine wallaroo). E. prionotemni, new species, is described from M. eugenii, M. parryi, M. rufogriseus, M. agilis (agile wallaby) and M. dorsalis. E. mykytowyczi, new species, is described from M. agilis, M. antilopinus, and M. parryi. E. parryi, new species, is described from M. parryi. E. yathongensis, new species, is described from M. fuliginosus and M. giganteus. E. parma, new species, is described from M. parma, and E. desmaresti, new species, is described from M. rufogriseus. E. kogoni Mykytowycz, 1964, and E. rufusi Prasad, 1960 are considered species inquirendae. The host-parasite associations of these coccidia, and of similar species of Eimeria in other genera of Macropodoid marsupials, are discussed in relation to the postulated phylogeny of the hosts.  相似文献   

8.
Abundances of the parasitic nematodes Trichostrongylus retortaeformis and Passalurus ambiguus, and 8 Eimeria species were estimated by fecal egg and oocyst output in 12 discrete free-ranging populations of wild rabbits (Oryctolagus cuniculus) in southwestern Australia. Comparisons of parasite egg and oocyst counts were made between those rabbits known to have survived at least 2 mo after fecal samples were collected and those rabbits that did not survive. There were significant negative relationships between parasite egg and oocyst counts and survival when all age groups and collection periods were pooled for several species of coccidia and for T. retortaeformis. However, when the same comparisons were made within rabbit age groups and within collection periods, there were very few significant differences even where sample sizes were quite large. The differences indicated by the pooled analysis for coccidia were most likely due to an uneven host age distribution with respect to survival, combined with an uneven distribution of the oocyst counts with rabbit age. The result for T. retortaeformis was similarly affected but by a seasonal pattern. Parasitism by nematodes and coccidia did not appear to be an important mortality factor in these rabbit populations, at least at the range of host densities we examined. This suggests that other factors must have been responsible for the observed pattern of density-dependent regulation in these rabbits.  相似文献   

9.
10.
The 'crowding effect' in avian coccidia, following administration of graded numbers of sporulated oocysts to na?ve hosts, is recognisable by two characteristics. First, increasing doses of oocysts give rise to progressively higher oocyst yields, until a level of infection is reached (the 'maximally producing dose') above which further dose increases result in progressive decreases in oocyst yields. Second, the number of oocysts produced per oocyst administered (the 'reproductive potential') tends to decrease as the oocyst dose is increased. The dose that gives the maximal reproductive potential is the 'crowding threshold' and doses exceeding this are 'crowded doses'. Graded doses of Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox or Eimeria tenella were given to chickens of the same breed, sex and age, reared on the same diet, under identical management. The two characteristics of the crowding effect were demonstrated graphically and, by interpolation, the estimated crowding thresholds were 903, < or =16, 39, < or =14, < or =16, < or =16 or 72 sporulated oocysts, respectively, for the seven Eimeria species enumerated above. This is apparently the first report of definitive experiments to quantify a crowding effect in E. brunetti, E. maxima, E. mitis, E. necatrix and E. praecox. Maximum experimental reproductive potentials were considerably lower than the theoretical reproductive potentials for all seven species. The interaction between availability of host intestinal cells and immunity contributing to the crowding effect is discussed. Standard curves obtained under specified conditions should be used to estimate appropriate infective doses for experimental designs or in vivo production of oocyst stocks. For experiments on effects of chemotherapy or immunisation on oocyst production, an infective dose lower than the crowding threshold should be used. For efficient production of laboratory or factory oocyst stocks, the maximally producing dose (which is greater than the crowding threshold), should be used.  相似文献   

11.
SYNOPSIS. All of 100 cottontail rabbits Sylvilagus audubonii were found to be infected with 1-6 species of Eimeria. Three new species, E. audubonii, E. neoirresidua and E. poudrei are described from this host. Sub-spherical oocysts of E. audubonii average 21.2 by 17.1 μ; polar body, micropyle, oocyst residuum and sporocyst residuum are all absent; ellipsoidal sporocysts average 12.9 by 5.8 μ. Ovoid to ellipsoidal oocysts of E. neoirresidua average 25.7 by 17.9 μ; polar body and oocyst residuum are absent; micropyle and sporocyst residuum are present; ellipsoidal sporocysts average 14.5 by 6.4 μ. Ovoid to ellipsoidal oocysts of E. poudrei average 26.0 by 18.1 μ; polar body is lacking; micropyle, oocyst residuum and sporocyst residuum are present; ellipsoidal sporocysts average 14.4 by 6.4 μ. Three species of Eimeria previously described in the literature, E. maior Honess, 1939, E. media form honessi Carvalho, 1943 and E. environ Honess, 1939 are redescribed. A detailed structural and statistical analysis of each species is presented with at least 200 sporulated oocysts measured in each instance. A host list and a key to the Eimeria of cottontails is given. The use of detailed studies of oocyst size and structure as a tool for specific diagnosis of the Eimeria of cottontails is discussed.  相似文献   

12.
Avian coccidiosis is an intestinal disease caused by protozoa of the genus Eimeria. To investigate the potential of recombinant protein vaccines to control coccidiosis, we cloned 2 Eimeria sp. genes (EtMIC2 and 3-1E), expressed and purified their encoded proteins, and determined the efficacy of in ovo immunization to protect against Eimeria infections. Immunogen-specific serum antibody titers, parasite fecal shedding, and body weight gains were measured as parameters of disease. When administered alone, the recombinant EtMIC2 gene product induced significantly higher antibody responses, lower oocyst fecal shedding, and increased weight gains compared with nonvaccinated controls following infection with E. tenella. Combined embryo immunization with the EtMIC2 protein plus chicken cytokine or chemokine genes demonstrated that all 3 parameters of vaccination were improved compared with those of EtMIC2 alone. In particular, covaccination with EtMIC2 plus interleukin (IL)-8, IL-16, transforming growth factor-beta4, or lymphotactin significantly decreased oocyst shedding and improved weight gains beyond those achieved by EtMIC2 alone. Finally, individual vaccination with either EtMIC2 or 3-1E stimulated protection against infection by the heterologous parasite E. acervulina. Taken together, these results indicate that in ovo vaccination with the EtMIC2 protein plus cytokine/chemokine genes may be an effective method to control coccidiosis.  相似文献   

13.
ABSTRACT. We attempt to extend knowledge of anuran Eimeria , and to provide a model for a complex approach to studies on coccidia. New host and geographic records of coccidia in European Anura are provided. In the second part, Eimeria ranae Dobell, 1909 is redescribed from European terrestrial frogs of the genus Rana based on light microscopic and ultrastructural data on both exogenous and endogenous developmental stages, host specificity, and molecular phylogenetic data. Results of experimental transmissions show for the first time that the host specificity of E. ranae is restricted to the genus Rana and that isolates from tadpoles and adults are conspecific. Disappearance of infection during metamorphosis was confirmed experimentally, suggesting that infections in adults result from reinfections. Poikilotherm-host Eimeria species possessing a Stieda body (SB) are for the first time included in a molecular phylogenetic analysis. Eimeria ranae and Eimeria arnyi from a colubrid snake form together a well-supported clade, basal to other SB-bearing coccidia. The other analysed reptile–host eimerians, Eimeria tropidura and Choleoeimeria sp., which possess bivalved sporocysts and lack a SB, represent a distinct basal lineage of the eimeriid clade. The third part of the article reviews anuran-host Eimeria . Three distinct oocyst morphotypes, apparently correlating with the character of endogenous development, are recognized and characterized among anuran eimeriids.  相似文献   

14.
In a recent article, we described a conceptual and analytical model to identify the key host species for parasite transmission in multi‐host communities and used data from 11 gastro‐intestinal parasites infecting up to five small mammal host species as an illustrative example of how the framework could be applied. A limitation of these empirical data was uncertainty in the identification of parasite species using egg/oocyst morphology, which could overestimate parasite sharing between host species. Here, we show that the key results of the original analysis, namely that (1) parasites naturally infect multiple host species, but typically rely on a small subset of infected host species for long‐term maintenance, (2) that different mechanisms underlie how particular host species dominate transmission and (3) that these different mechanisms influence the predicted efficiency of disease control measures, are robust to analysis of a smaller subset of host–parasite combinations that we have greatest confidence in identifying. We further comment briefly on the need for accurate parasite identification, ideally using molecular techniques to quantify cross‐species transmission and differentiate covert host specificity from true host generalism.  相似文献   

15.
Three generations of schisonts in the life cycle of Eimeria akeriana, the intestinal parasite of Meriones blackleri, were determined. Gametogony begins in 94 hours, the first oocysts discharge in 5.5--6 days and lasts 14.5 to 15 days after the oocyst administration. A cytochemical study of the distribution of the nucleic acids, proteins and amylopectin at the stages of endogenous development of E. akeriana has revealed a considerable similarity among the parasites of Eimeria though each type is characterized by some cytochemical peculiarities.  相似文献   

16.
17.
Host-parasite dynamics can be strongly affected by seasonality and age-related host immune responses. We investigated how observed variation in the prevalence and intensity of parasite egg or oocyst shedding in four co-occurring ungulate species may reflect underlying seasonal variation in transmission and host immunity. This study was conducted July 2005-October 2006 in Etosha National Park, Namibia, using indices of parasitism recorded from 1,022 fecal samples collected from plains zebra (Equus quagga), springbok (Antidorcas marsupialis), blue wildebeest (Connochaetes taurinus), and gemsbok (Oryx gazella). The presence and intensity of strongyle nematodes, Strongyloides spp. and Eimeria spp. parasites, were strongly seasonal for most host-parasite combinations, with more hosts infected in the wet season than the dry season. Strongyle intensity in zebra was significantly lower in juveniles than adults, and in springbok hosts, Eimeria spp. intensity was significantly greater in juveniles than adults. These results provide evidence that acquired immunity is less protective against strongyle nematodes than Eimeria spp. infections. The seasonal patterns in parasitism further indicate that the long dry season may limit development and survival of parasite stages in the environment and, as a result, host contact and parasite transmission.  相似文献   

18.
In the Austral summer and autumn of 2000 and 2001, mortalities of black-footed abalone Haliotis iris (Martyn, 1784) occurred in a commercial facility in New Zealand. Histological analyses suggested that infection by a haplosporidian parasite was responsible. To confirm identification as a haplosporidian and to help determine if this parasite represented a new, undescribed species, DNA was extracted from infected host tissues scored as positive for infection by histological examination. Small-subunit rRNA (SSU rRNA) gene sequences from both the host abalone and a parasitic organism were amplified by PCR and characterized. Although the sequence for this parasite was novel, not matching any known SSU rRNA gene sequences, phylogenetic analyses strongly supported grouping this parasite with the haplosporidians. Parsimony analyses placed the parasite at the base of the phylum Haplosporidia, ancestral to Urosporidium crescens and the Haplosporidium, Bonamia, and Minchinia species. Sequencing of multiple parasite DNA clones revealed a single polymorphic site in the haplosporidian SSU rRNA gene sequence.  相似文献   

19.
The anticoccidial salinomycin has a cidal effect against chicken coccidia. Restricted and unrestricted medication studies and histopathological examinations of chicks infected with Eimeria acervulina, E. maxima, or E. tenella showed that parasites were destroyed within host cells during asexual development. Most sporozoites failed to become trophozoites and were destroyed 30--72 hr after ingestion of oocysts. The drug also affected schizonts during initial nuclear replication by either destroying or significantly delaying their maturation. Parasites affected by the drug were distorted grossly. Drug action against gametogony was not observed histologically, but when medication was restricted to this period of the life cycle, subsequent oocyst shedding of all 3 species was reduced by 20--70% compared to unmedicated controls. When drug was provided during the entire parasite life cycle, activity against asexual stages was so complete that only a limited number of parasites survived to form gamonts, and oocyst shedding was reduced by 80--90% relative to controls. As with other ionophores, salinomycin had no effect upon rate of oocyst sporulation.  相似文献   

20.
SYNOPSIS.
Attempted infection of 2 young lambs with oocysts of Eimeria christenseni from a goat was unsuccessful. Negative results were obtained also when young kids were fed oocysts of Eimeria ninakohlyakimovae from sheep. There was no difficulty in infecting lambs with the sheep coccidium resembling E. ninakohlyakimovae nor goats with the goat coccidium E. christenseni. Oocysts from the goat measured 38.4 × 26.7 m, but were easily distinguished from Eimeria ahsata from the sheep by sporocyst size and shape, and from Eimeria ovina by oocyst size. Eimeria ninakohlyakimovae -like oocysts from sheep averaged 23.0 ×18.2 m and were morphologically indistinguishable from previously reported goat coccidia.
Since no cross infections of sheep and goats could be accomplished with oocysts of Eimeria sp. characteristic of one or the other host, I concluded that sheep coccidia previously known as E. ninakohlyakimovae are distinct from morphologically similar goat coccidia and therefore constitute a separate species. Since the name E. ninakohlyakimovae was first used for coccidia from the goat, the sheep coccidium is renamed Eimeria ovinoidalis with oocyst structure and endogenous stages similar to those previously described from the sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号