首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

2.

Key message

QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives.

Abstract

The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype?×?family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
  相似文献   

3.
Genotypic variation in the ability of wheat roots to penetrate wax layers   总被引:1,自引:0,他引:1  

Background and aims

The role of the root system in mediating crop yields has recently been emphasised, resulting in several laboratory approaches for phenotyping root traits. We aimed to determine the existence of, and reasons for, genotypic variation in wheat (Triticum aestivum L.) root penetration of strong wax layers.

Methods

Three contrasting groups (UK elite lines, CIMMYT lines and near-isogenic lines of cv Mercia containing dwarfing and semi-dwarfing Rht alleles) comprising 18 different genotypes with contrasting phenologies were studied. We determined the ability of roots of these genotypes to penetrate strong wax layers and the angular spread of the root systems.

Results

There were no intrinsic differences in root system ability to penetrate strong wax layers (consistent with the similar root diameter of all lines) since greater root penetration was simply related to more root axes. Recording root penetration of concentric zones of the wax layer demonstrated that cv. Battalion had a root system with a smaller angular spread than cv. Robigus, which had the root system with the greatest angular spread.

Conclusions

There was limited genotypic variability in root penetration of strong layers within the wheat cultivars studied. A key challenge will be to determine the physiological and agronomic significance of the variation in root angular spread.  相似文献   

4.
5.

Key message

We suggest multi-parental nested association mapping as a valuable innovation in barley genetics, which increases the power to map quantitative trait loci and assists in extending genetic diversity of the elite barley gene pool.

Abstract

Plant genetic resources are a key asset to further improve crop species. The nested association mapping (NAM) approach was introduced to identify favorable genes in multi-parental populations. Here, we report toward the development of the first explorative barley NAM population and demonstrate its usefulness in a study on mapping quantitative trait loci (QTLs) for leaf rust resistance. The NAM population HEB-5 was developed from crossing and backcrossing five exotic barley donors with the elite barley cultivar ‘Barke,’ resulting in 295 NAM lines in generation BC1S1. HEB-5 was genetically characterized with 1,536 barley SNPs. Across HEB-5 and within the NAM families, no deviation from the expected genotype and allele frequencies was detected. Genetic similarity between ‘Barke’ and the NAM families ranged from 78.6 to 83.1 %, confirming the backcrossing step during population development. To explore its usefulness, a screen for leaf rust (Puccinia hordei) seedling resistance was conducted. Resistance QTLs were mapped to six barley chromosomes, applying a mixed model genome-wide association study. In total, four leaf rust QTLs were detected across HEB-5 and four QTLs within family HEB-F23. Favorable exotic QTL alleles reduced leaf rust symptoms on two chromosomes by 33.3 and 36.2 %, respectively. The located QTLs may represent new resistance loci or correspond to new alleles of known resistance genes. We conclude that the exploratory population HEB-5 can be applied to mapping and utilizing exotic QTL alleles of agronomic importance. The NAM concept will foster the evaluation of the genetic diversity, which is present in our primary barley gene pool.  相似文献   

6.

Key message

Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ).

Abstract

Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.  相似文献   

7.

Key message

Considerable genome variation had been incorporated within rapeseed breeding programs over past decades.

Abstract

In past decades, there have been substantial changes in phenotypic properties of rapeseed as a result of extensive breeding effort. Uncovering the underlying patterns of allelic variation in the context of genome organisation would provide knowledge to guide future genetic improvement. We assessed genome-wide genetic changes, including population structure, genetic relatedness, the extent of linkage disequilibrium, nucleotide diversity and genetic differentiation based on F ST outlier detection, for a panel of 472 Brassica napus inbred accessions using a 60 k Brassica Infinium® SNP array. We found genetic diversity varied in different sub-groups. Moreover, the genetic diversity increased from 1950 to 1980 and then remained at a similar level in China and Europe. We also found ~6–10 % genomic regions revealed high F ST values. Some QTLs previously associated with important agronomic traits overlapped with these regions. Overall, the B. napus C genome was found to have more high F ST signals than the A genome, and we concluded that the C genome may contribute more valuable alleles to generate elite traits. The results of this study indicate that considerable genome variation had been incorporated within rapeseed breeding programs over past decades. These results also contribute to understanding the impact of rapeseed improvement on available genome variation and the potential for dissecting complex agronomic traits.  相似文献   

8.

Key message

Biochemical characterization in combination with genetic analyses in BC 2 S 1 plants and near-isogenic lines led to the detection and validation of C. baccatum loci affecting flavor, terpenoid content and Brix level.

Abstract

The species Capsicum baccatum includes the most common hot peppers of the Andean cuisine, known for their rich variation in flavors and aromas. So far the C. baccatum genetic variation remained merely concealed for Capsicum annuum breeding, due to post-fertilization genetic barriers encountered in interspecific hybridization. However, to exploit the potential flavor wealth of C. baccatum we combined interspecific crossing with embryo rescue, resulting in a multi-parent BC2S1 population. Volatile and non-volatile compounds plus some physical characters were measured in mature fruits, in combination with taste evaluation by a sensory panel. An enormous variation in biochemical composition and sensory attributes was found, with almost all traits showing transgression. A population-specific genetic linkage map was developed for QTL mapping. BC2S1 QTLs were validated in an experiment with near-isogenic lines, resulting in confirmed genetic effects for physical, biochemical and sensory traits. Three findings are described in more detail: (1) A small C. baccatum LG3 introgression caused an extraordinary effect on flavor, resulting in significantly higher scores for the attributes aroma, flowers, spices, celery and chives. In an attempt to identify the responsible biochemical compounds few consistently up- and down-regulated metabolites were detected. (2) Two introgressions (LG10.1 and LG1) had major effects on terpenoid content of mature fruits, affecting at least 15 different monoterpenes. (3) A second LG3 fragment resulted in a strong increase in Brix without negative effects on fruit size. The mapping strategy, the potential application of studied traits and perspectives for breeding are discussed.  相似文献   

9.

Key message

The QTLs analyses here reported demonstrate the significant role of both individual additive and epistatic effects in the genetic control of seed quality traits in the Andean common bean.

Abstract

Common bean shows considerable variability in seed size and coat color, which are important agronomic traits determining farmer and consumer acceptability. Therefore, strategies must be devised to improve the genetic base of cultivated germplasm with new alleles that would contribute positively to breeding programs. For that purpose, a population of 185 recombinant inbred lines derived from an Andean intra-gene pool cross, involving an adapted common bean (PMB0225 parent) and an exotic nuña bean (PHA1037 parent), was evaluated under six different—short and long-day—environmental conditions for seed dimension, weight, color, and brightness traits, as well as the number of seed per pod. A multi-environment Quantitative Trait Loci (QTL) analysis was carried out and 59 QTLs were mapped on all linkage groups, 18 of which had only individual additive effects, while 27 showed only epistatic effects and 14 had both individual additive and epistatic effects. Multivariate models that included significant QTL explained from 8 to 68  % and 2 to 15 % of the additive and epistatic effects, respectively. Most of these QTLs were consistent over environment, though interactions between QTLs and environments were also detected. Despite this, QTLs with differential effect on long-day and short-day environments were not found. QTLs identified were positioned in cluster, suggesting that either pleiotropic QTLs control several traits or tightly linked QTLs for different traits map together in the same genomic regions. Overall, our results show that digenic epistatic interactions clearly play an important role in the genetic control of seed quality traits in the Andean common bean.  相似文献   

10.

Key message

Using landraces for broadening the genetic base of elite maize germplasm is hampered by heterogeneity and high genetic load. Production of DH line libraries can help to overcome these problems.

Abstract

Landraces of maize (Zea mays L.) represent a huge reservoir of genetic diversity largely untapped by breeders. Genetic heterogeneity and a high genetic load hamper their use in hybrid breeding. Production of doubled haploid line libraries (DHL) by the in vivo haploid induction method promises to overcome these problems. To test this hypothesis, we compared the line per se performance of 389 doubled haploid (DH) lines across six DHL produced from European flint landraces with that of four flint founder lines (FFL) and 53 elite flint lines (EFL) for 16 agronomic traits evaluated in four locations. The genotypic variance (\(\sigma _{G}^{2}\)) within DHL was generally much larger than that among DHL and exceeded also \(\sigma _{G}^{2}\) of the EFL. For most traits, the means and \(\sigma _{G}^{2}\) differed considerably among the DHL, resulting in different expected selection gains. Mean grain yield of the EFL was 25 and 62% higher than for the FFL and DHL, respectively, indicating considerable breeding progress in the EFL and a remnant genetic load in the DHL. Usefulness of the best 20% lines was for individual DHL comparable to the EFL and grain yield (GY) in the top lines from both groups was similar. Our results corroborate the tremendous potential of landraces for broadening the narrow genetic base of elite germplasm. To make best use of these “gold reserves”, we propose a multi-stage selection approach with optimal allocation of resources to (1) choose the most promising landraces for DHL production and (2) identify the top DH lines for further breeding.
  相似文献   

11.

Background

Cotton fibers (produced by Gossypium species) are the premier natural fibers for textile production. The two tetraploid species, G. barbadense (Gb) and G. hirsutum (Gh), differ significantly in their fiber properties, the former having much longer, finer and stronger fibers that are highly prized. A better understanding of the genetics and underlying biological causes of these differences will aid further improvement of cotton quality through breeding and biotechnology. We evaluated an inter-specific Gh × Gb recombinant inbred line (RIL) population for fiber characteristics in 11 independent experiments under field and glasshouse conditions. Sites were located on 4 continents and 5 countries and some locations were analyzed over multiple years.

Results

The RIL population displayed a large variability for all major fiber traits. QTL analyses were performed on a per-site basis by composite interval mapping. Among the 651 putative QTLs (LOD > 2), 167 had a LOD exceeding permutation based thresholds. Coincidence in QTL location across data sets was assessed for the fiber trait categories strength, elongation, length, length uniformity, fineness/maturity, and color. A meta-analysis of more than a thousand putative QTLs was conducted with MetaQTL software to integrate QTL data from the RIL and 3 backcross populations (from the same parents) and to compare them with the literature. Although the global level of congruence across experiments and populations was generally moderate, the QTL clustering was possible for 30 trait x chromosome combinations (5 traits in 19 different chromosomes) where an effective co-localization of unidirectional (similar sign of additivity) QTLs from at least 5 different data sets was observed. Most consistent meta-clusters were identified for fiber color on chromosomes c6, c8 and c25, fineness on c15, and fiber length on c3.

Conclusions

Meta-analysis provided a reliable means of integrating phenotypic and genetic mapping data across multiple populations and environments for complex fiber traits. The consistent chromosomal regions contributing to fiber quality traits constitute good candidates for the further dissection of the genetic and genomic factors underlying important fiber characteristics, and for marker-assisted selection.  相似文献   

12.
13.

Key message

This study demonstrates the first practical use of CSILs for the transfer of fiber quality QTLs into Upland cotton cultivars using SSR markers without detrimentally affecting desirable agronomic characteristics.

Abstract

Gossypium hirsutum is characterized by its high lint production and medium fiber quality compared to extra-long staple cotton G. barbadense. Transferring valuable traits or genes from G. barbadense into G. hirsutum is a promising but challenging approach through a traditional interspecific introgression strategy. We developed one set of chromosome segment introgression lines (CSILs), where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense cv. Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS). Among them, four CSILs, IL040-A4-1, IL080-D6-1, IL088-A7-3 and IL019-A2-6, found to be associated with superior fiber qualities including fiber length, strength and fineness QTL in Xinjiang were selected and backcrossed, and transferred these QTLs into three commercial Upland cotton cultivars such as Xinluzao (XLZ) 26, 41 and 42 grown in Xinjiang. By backcrossing and self-pollinating twice, five improved lines (3262-4, 3389-2, 3326-3, 3380-4 and 3426-5) were developed by MAS of background and introgressed segments. In diverse field trials, these QTLs consistently and significantly offered additive effects on the target phenotype. Furthermore, we also pyramided two segments from different CSILs (IL080-D6-1 and IL019-A2-6) into cultivar 0768 to accelerate breeding process purposefully with MAS. The improved lines pyramided by these two introgressed segments showed significant additive epistatic effects in four separate field trials. No significant alteration in yield components was observed in these modified lines. In summary, we first report that these CSILs have great potential to improve fiber qualities in Upland cotton MAS breeding programs.  相似文献   

14.

Key message

A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis.

Abstract

Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.  相似文献   

15.
16.
The improvement of cotton fiber quality is extremely important because of changes in spinning technology. The identification of the stable QTLs affecting fiber traits across different generations will be greatly helpful to be used effectively in molecular marker-assisted selection to improve fiber quality of cotton cultivars in the future. Using three elite fiber lines of Upland cotton (Gossypium hirsutum L.) as parents, three linkage maps were constructed to tag QTLs for fiber qualities using SSR markers. There were 39 QTLs, 17 significant QTLs, LOD 3.0 and 22 suggestive QTLs, 3.0 > LOD 2.0, detected by composite interval mapping for fiber traits, in which 11 QTLs were for fiber length, 10 for fiber strength, 9 for micronaire and 9 for fiber elongation. Out of 17 significant QTLs, 5 QTLs with high logarithm of odds (LOD) score value and stable effect could be found in both F2 and F2:3 segregating populations, showing a great potential for molecular-assisted selection in improving fiber quality. At least three common QTLs could be identified in two populations. These common QTLs detected in different populations suggested that there existed elite fiber genes and possibly of the same origin. In addition, we found three pairs of putative homoeologous QTLs, qFL-7-1c and qFL-16-1c, qFS-D03-1a, qFS-A02-1b and qFS-A02-1c, and qFE–D03-1a and qFE-A02-1c. Our results provided a better understanding of the genetic factors of fiber traits in AD tetraploid cottons.  相似文献   

17.

Key message

Best linear unbiased prediction (BLUP), which uses pedigree to estimate breeding values, can result in increased genetic gains for low heritability traits in autotetraploid potato.

Abstract

Conventional potato breeding strategies, based on outcrossing followed by phenotypic recurrent selection over a number of generations, can result in slow but steady improvements of traits with moderate to high heritability. However, faster gains, particularly for low heritability traits, could be made by selection on estimated breeding values (EBVs) calculated using more complete pedigree information in best linear unbiased prediction (BLUP) analysis. One complication in applying BLUP predictions of breeding value to potato breeding programs is the autotetraploid inheritance pattern of this species. Here we have used a large pedigree, dating back to 1908, to estimate heritability for nine key traits for potato breeding, modelling autotetraploid inheritance. We estimate the proportion of double reduction in potatoes from our data, and across traits, to be in the order of 10 %. Estimates of heritability ranged from 0.21 for breeder’s visual preference, 0.58 for tuber yield, to 0.83 for plant maturity. Using the accuracies of the EBVs determined by cross generational validation, we model the genetic gain that could be achieved by selection of genotypes for breeding on BLUP EBVs and demonstrate that gains can be greater than in conventional schemes.  相似文献   

18.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

19.
Wheat curl mite (WCM, Aceria tosichella Keifer) and WCM-transmitted wheat streak mosaic virus (WSMV, genus Tritimovirus) are devastating production constraints for wheat in the US Great Plains. Breeding wheat cultivars with genetic resistance to WCM and WSMV is a viable and economically feasible way to reduce yield loss. The objectives of this study were to (a) identify tightly linked markers for WCM resistance in the wheat cultivar TAM 112 (PI 643143) using linkage and association analysis with the 90K Infinium iSelect SNP array and genotyping-by-sequencing, respectively and (b) develop and test kompetitive allele specific PCR (KASP) single-nucleotide polymorphisms (SNPs) for marker-assisted selection (MAS) of WCM resistance. We tested 124 F5:7 recombinant inbred lines (RILs) derived from the cross of TAM 112 and the WCM-susceptible cultivar TAM 111 (PI 631352). All lines were infested with a Texas WCM collection 2 (TWCMC2) that is virulent to resistance found on the wheat-rye 1AL.1RS translocation at the two-leaf stage and were rated for symptoms on the first and second week after infestation. Linkage maps were constructed with 4890 markers, including SNPs, simple sequence repeats (SSRs), and sequence-tagged site (STS) markers covering 21 chromosomes. A WCM resistance gene present in TAM 112 (CmcTAM112) was mapped onto chromosome arm 6DS. A genome-wide association study of wheat streak mosaic (WSM) symptoms from a separate experiment in Colorado showed significant marker-trait associations at the target regions on 6DS where CmcTAM112 was located, which demonstrated the effectiveness of this gene to reduce symptom severity. Four SNPs flanking CmcTAM112 were mapped within 3.6 cM in the biparental mapping population. We developed two KASP markers that are within 1.3 cM distal to CmcTAM112 and tested in diverse germplasm. These two markers can be used in MAS for improving WCM resistance in some wheat genetic backgrounds.  相似文献   

20.
Resistance to frost and winter hardiness, as well as crop capacity and its components, were studied in the recombinant-inbred F5 Odesskaya and 16/Bezostayal lines and also in 61 lines of winter wheat carrying different alleles of the Rht8 gene. We observed no influence of different alleles of the Rht8 gene on the traits under consideration. The preponderance of the Rht8c allele in modern wheat lines developed at the Plant Breeding and Genetics Institute is therefore a result of its being the most frequently used allele in the genetic pool since 1959.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号