首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Key message

A novel high-density consensus wheat genetic map was obtained based on three related RIL populations, and the important chromosomal regions affecting yield and related traits were specified.

Abstract

A prerequisite for mapping quantitative trait locus (QTL) is to build a genetic linkage map. In this study, three recombinant inbred line populations (represented by WL, WY, and WJ) sharing one common parental line were used for map construction and subsequently for QTL detection of yield-related traits. PCR-based and diversity arrays technology markers were screened in the three populations. The integrated genetic map contains 1,127 marker loci, which span 2,976.75 cM for the whole genome, 985.93 cM for the A genome, 922.16 cM for the B genome, and 1,068.65 cM for the D genome. Phenotypic values were evaluated in four environments for populations WY and WJ, but three environments for population WL. Individual and combined phenotypic values across environments were used for QTL detection. A total of 165 putative additive QTL were identified, 22 of which showed significant additive-by-environment interaction effects. A total of 65 QTL (51.5 %) were stable across environments, and 23 of these (35.4 %) were common stable QTL that were identified in at least two populations. Notably, QTkw-5B.1, QTkw-6A.2, and QTkw-7B.1 were common major stable QTL in at least two populations, exhibiting 11.28–16.06, 5.64–18.69, and 6.76–21.16 % of the phenotypic variance, respectively. Genetic relationships between kernel dimensions and kernel weight and between yield components and yield were evaluated. Moreover, QTL or regions that commonly interact across genetic backgrounds were discussed by comparing the results of the present study with those of previous similar studies. The present study provides useful information for marker-assisted selection in breeding wheat varieties with high yield.  相似文献   

2.

Key message

We identified 21 new and stable QTL, and 11 QTL clusters for yield-related traits in three bread wheat populations using the wheat 90 K SNP assay.

Abstract

Identification of quantitative trait loci (QTL) for yield-related traits and closely linked molecular markers is important in order to identify gene/QTL for marker-assisted selection (MAS) in wheat breeding. The objectives of the present study were to identify QTL for yield-related traits and dissect the relationships among different traits in three wheat recombinant inbred line (RIL) populations derived from crosses Doumai?×?Shi 4185 (D?×?S), Gaocheng 8901?×?Zhoumai 16 (G?×?Z) and Linmai 2?×?Zhong 892 (L?×?Z). Using the available high-density linkage maps previously constructed with the wheat 90 K iSelect single nucleotide polymorphism (SNP) array, 65, 46 and 53 QTL for 12 traits were identified in the three RIL populations, respectively. Among them, 34, 23 and 27 were likely to be new QTL. Eighteen common QTL were detected across two or three populations. Eleven QTL clusters harboring multiple QTL were detected in different populations, and the interval 15.5–32.3 cM around the Rht-B1 locus on chromosome 4BS harboring 20 QTL is an important region determining grain yield (GY). Thousand-kernel weight (TKW) is significantly affected by kernel width and plant height (PH), whereas flag leaf width can be used to select lines with large kernel number per spike. Eleven candidate genes were identified, including eight cloned genes for kernel, heading date (HD) and PH-related traits as well as predicted genes for TKW, spike length and HD. The closest SNP markers of stable QTL or QTL clusters can be used for MAS in wheat breeding using kompetitive allele-specific PCR or semi-thermal asymmetric reverse PCR assays for improvement of GY.
  相似文献   

3.

Key message

QTL were identified for root architectural traits in maize.

Abstract

Root architectural traits, including the number, length, orientation, and branching of the principal root classes, influence plant function by determining the spatial and temporal domains of soil exploration. To characterize phenotypic patterns and their genetic control, three recombinant inbred populations of maize were grown for 28 days in solid media in a greenhouse and evaluated for 21 root architectural traits, including length, number, diameter, and branching of seminal, primary and nodal roots, dry weight of embryonic and nodal systems, and diameter of the nodal root system. Significant phenotypic variation was observed for all traits. Strong correlations were observed among traits in the same root class, particularly for the length of the main root axis and the length of lateral roots. In a principal component analysis, relationships among traits differed slightly for the three families, though vectors grouped together for traits within a given root class, indicating opportunities for more efficient phenotyping. Allometric analysis showed that trajectories of growth for specific traits differ in the three populations. In total, 15 quantitative trait loci (QTL) were identified. QTL are reported for length in multiple root classes, diameter and number of seminal roots, and dry weight of the embryonic and nodal root systems. Phenotypic variation explained by individual QTL ranged from 0.44 % (number of seminal roots, NyH population) to 13.5 % (shoot dry weight, OhW population). Identification of QTL for root architectural traits may be useful for developing genotypes that are better suited to specific soil environments.  相似文献   

4.

Key message

Genetic control of maize grain carotenoid profiles is coordinated through several loci distributed throughout three secondary metabolic pathways, most of which exhibit additive, and more importantly, pleiotropic effects.

Abstract

The genetic basis for the variation in maize grain carotenoid concentrations was investigated in two F2:3 populations, DEexp × CI7 and A619 × SC55, derived from high total carotenoid and high β-carotene inbred lines. A comparison of grain carotenoid concentrations from population DEexp × CI7 grown in different environments revealed significantly higher concentrations and greater trait variation in samples harvested from a subtropical environment relative to those from a temperate environment. Genotype by environment interactions was significant for most carotenoid traits. Using phenotypic data in additive, environment-specific genetic models, quantitative trait loci (QTL) were identified for absolute and derived carotenoid traits in each population, including those specific to the isomerization of β-carotene. A multivariate approach for these correlated traits was taken, using carotenoid trait principal components (PCs) that jointly accounted for 97 % or more of trait variation. Component loadings for carotenoid PCs were interpreted in the context of known substrate-product relationships within the carotenoid pathway. Importantly, QTL for univariate and multivariate traits were found to cluster in close proximity to map locations of loci involved in methyl-erythritol, isoprenoid and carotenoid metabolism. Several of these genes, including lycopene epsilon cyclase, carotenoid cleavage dioxygenase1 and beta-carotene hydroxylase, were mapped in the segregating populations. These loci exhibited pleiotropic effects on α-branch carotenoids, total carotenoid profile and β-branch carotenoids, respectively. Our results confirm that several QTL are involved in the modification of carotenoid profiles, and suggest genetic targets that could be used for the improvement of total carotenoid and β-carotene in future breeding populations.  相似文献   

5.

Key message

An integrated genetic map was constructed for einkorn wheat A genome and provided valuable information for QTL mapping and genome sequence anchoring.

Abstract

Wheat is one of the most widely grown food grain crops in the world. The construction of a genetic map is a key step to organize biologically or agronomically important traits along the chromosomes. In the present study, an integrated linkage map of einkorn wheat was developed using 109 recombinant inbred lines (RILs) derived from an inter sub-specific cross, KT1-1 (T. monococcum ssp. boeoticum) × KT3-5 (T. monococcum ssp. monococcum). The map contains 926 molecular markers assigned to seven linkage groups, and covers 1,377 cM with an average marker interval of 1.5 cM. A quantitative trait locus (QTL) analysis of five agronomic traits identified 16 stable QTL on all seven chromosomes, except 6A. The total phenotypic variance explained by these stable QTL using multiple regressions varied across environments from 8.8 to 87.1 % for days to heading, 24.4–63.0 % for spike length, 48.2–79.6 % for spikelet number per spike, 13.1–48.1 % for plant architecture, and 12.2–26.5 % for plant height, revealing that much of the RIL phenotypic variation had been genetically dissected. Co-localizations of closely linked QTL for different traits were frequently observed, especially on 3A and 7A. The QTL on 3A, 5A and 7A were closely associated with Eps-A m 3, Vrn1 and Vrn3 loci, respectively. Furthermore, this genetic map facilitated the anchoring of 237 T. urartu scaffolds onto seven chromosomes with a physical length of 26.15 Mb. This map and the QTL data provide valuable genetic information to dissect important agronomic and developmental traits in diploid wheat and contribute to the genetic ordering of the genome assembly.
  相似文献   

6.

Key message

A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel.

Abstract

Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285–294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.  相似文献   

7.

Background

Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes.

Results

The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue.

Conclusions

A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.  相似文献   

8.

Key message

Genetic and phenotypic analysis of two complementary maize panels revealed an important variation for biomass yield. Flowering and biomass QTL were discovered by association mapping in both panels.

Abstract

The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing complementary heterotic groups for Northern Europe. They were genotyped with the 50 k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height, and biomass. The molecular information revealed to be a powerful tool for discovering different levels of structure and relatedness in both panels. This study revealed important variation and potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time quantitative trait loci (QTL) found in literature. Biomass yield QTL were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40 % with a satisfying control of the false positive rate. This study gave insights into the variability and the genetic architectures of biomass-related traits in Flint and Dent lines and suggests important potential of these two pools for breeding high biomass yielding hybrid varieties.  相似文献   

9.

Key message

Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea.

Abstract

The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9–71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.  相似文献   

10.

Key message

The rye-derived dwarfing gene Ddw1 on chromosome 5R acts in triticale in considerably reducing plant height, increasing FHB severity and delaying heading stage.

Abstract

Triticale, an amphiploid hybrid between durum wheat and rye, is an European cereal mainly grown in Germany, France, Poland, and Belarus for feeding purposes. Dwarfing genes might further improve the genetic potential of triticale concerning lodging resistance and yield. However, they might have pleiotropic effects on other, agronomically important traits including Fusarium head blight. Therefore, we analyzed a population of 199 doubled haploid (DH) lines of the cross HeTi117-06 × Pigmej for plant height, heading stage, and FHB severity across 2 locations and 2 years. The most prominent QTL was detected on chromosome 5R explaining 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. The frequency of recovery in cross validation was ≥90 % for all three traits. Because the markers that detect dwarfing gene Ddw1 in rye are also in our population the most closely linked markers, we assume that this major QTL resembles Ddw1. For FHB severity two, for plant height three, and for heading stage five additional QTL were detected. Caused by the considerable genetic variation for heading stage and FHB severity within the progeny with the dwarfing allele, short-strawed, early heading and FHB-resistant lines can be developed when population size is large enough.  相似文献   

11.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

12.
Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.)   总被引:1,自引:0,他引:1  

Key message

Analysis of phenotypic data for 20 drought tolerance traits in 1–7 seasons at 1–5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement.

Abstract

Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50 % production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations—ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1–7 seasons at 1–5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed (http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20 % phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19 % phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48 % robust M-QTLs for 12 traits and explaining about 58.20 % phenotypic variation present on CaLG04 has been referred as “QTL-hotspot”. This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea.  相似文献   

13.

Key message

Ten QTL underlying the accumulation of Zn and Fe in the grain were mapped in a set of RILs bred from the cross Triticum spelta × T. aestivum . Five of these loci (two for Zn and three for Fe) were consistently detected across seven environments.

Abstract

The genetic basis of accumulation in the grain of Zn and Fe was investigated via QTL mapping in a recombinant inbred line (RIL) population bred from a cross between Triticum spelta and T. aestivum. The concentration of the two elements was measured from grain produced in three locations over two consecutive cropping seasons and from a greenhouse trial. The range in Zn and Fe concentration across the RILs was, respectively, 18.8–73.5 and 25.3–59.5 ppm, and the concentrations of the two elements were positively correlated with one another (rp =+0.79). Ten QTL (five each for Zn and Fe accumulation) were detected, mapping to seven different chromosomes. The chromosome 2B and 6A grain Zn QTL were consistently expressed across environments. The proportion of the phenotype explained (PVE) by QZn.bhu-2B was >16 %, and the locus was closely linked to the SNP marker 1101425|F|0, while QZn.bhu-6A (7.0 % PVE) was closely linked to DArT marker 3026160|F|0. Of the five Fe QTL detected, three, all mapping to chromosome 1A were detected in all seven environments. The PVE for QFe.bhu-3B was 26.0 %.  相似文献   

14.
Simultaneous improvement in grain yield and related traits in maize hybrids and their parents (inbred lines) requires a better knowledge of genotypic correlations between family per se performance (FP) and testcross performance (TP). Thus, to understand the genetic basis of yield-related traits in both inbred lines and their testcrosses, two F 2:3 populations (including 230 and 235 families, respectively) were evaluated for both FP and TP of eight yield-related traits in three diverse environments. Genotypic correlations between FP and TP, $ \hat{r}_{\text{g}} $ (FP, TP), were low (0–0.16) for grain yield per plant (GYPP) and kernel number per plant (KNPP) in the two populations, but relatively higher (0.32–0.69) for the other six traits with additive effects as the primary gene action. Similar results were demonstrated by the genotypic correlations between observed and predicted TP values based on quantitative trait loci positions and effects for FP, $ \hat{r}_{\text{g}} $ (M FP, Y TP). A total of 88 and 35 QTL were detected with FP and TP, respectively, across all eight traits in the two populations. However, the genotypic variances explained by the QTL detected in the cross-validation analysis were much lower than those in the whole data set for all traits. Several common QTL between FP and TP that accounted for large phenotypic variances were clustered in four genomic regions (bin 1.10, 4.05–4.06, 9.02, and 10.04), which are promising candidate loci for further map-based cloning and improvement in grain yield in maize. Compared with publicly available QTL data, these QTL were also detected in a wide range of genetic backgrounds and environments in maize. These results imply that effective selection based on FP to improve TP could be achieved for traits with prevailing additive effects.  相似文献   

15.

Key message

QTL mapping in multiple families identifies trait-specific and pleiotropic QTL for biomass yield and plant height in triticale.

Abstract

Triticale shows a broad genetic variation for biomass yield which is of interest for a range of purposes, including bioenergy. Plant height is a major contributor to biomass yield and in this study, we investigated the genetic architecture underlying biomass yield and plant height by multiple-line cross QTL mapping. We employed 647 doubled haploid lines from four mapping populations that have been evaluated in four environments and genotyped with 1710 DArT markers. Twelve QTL were identified for plant height and nine for biomass yield which cross-validated explained 59.6 and 38.2 % of the genotypic variance, respectively. A major QTL for both traits was identified on chromosome 5R which likely corresponds to the dominant dwarfing gene Ddw1. In addition, we detected epistatic QTL for plant height and biomass yield which, however, contributed only little to the genetic architecture of the traits. In conclusion, our results demonstrate the potential of genomic approaches for a knowledge-based improvement of biomass yield in triticale.  相似文献   

16.

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.  相似文献   

17.

Key message

Cruciferin (cru) and napin (nap) were negatively correlated and the cru/nap ratio was closely negative correlated with glucosinolate content indicating a link between the two biosynthetic pathways.

Abstract

Canola-type oilseed rape (Brassica napus L.) is an economically important oilseed crop in temperate zones. Apart from the oil, the canola protein shows potential as a value-added food and nutraceutical ingredient. The two major storage protein groups occurring in oilseed rape are the 2 S napins and 12 S cruciferins. The aim of the present study was to analyse the genetic variation and the inheritance of napin and cruciferin content of the seed protein in the winter oilseed rape doubled haploid population Express 617 × R53 and to determine correlations to other seed traits. Seed samples were obtained from field experiments performed in 2 years at two locations with two replicates in Germany. A previously developed molecular marker map of the DH population was used to map quantitative trait loci (QTL) of the relevant traits. The results indicated highly significant effects of the year and the genotype on napin and cruciferin content as well as on the ratio of cruciferin to napin. Heritabilities were comparatively high with 0.79 for napin and 0.77 for cruciferin. Napin and cruciferin showed a significant negative correlation (?0.36**) and a close negative correlation of the cru/nap ratio to glucosinolate content was observed (?0.81**). Three QTL for napin and two QTL for cruciferin were detected, together explaining 47 and 35 % of the phenotypic variance. A major QTL for glucosinolate content was detected on linkage group N19 whose confidence interval overlapped with QTL for napin and cruciferin content. Results indicate a relationship between seed protein composition and glucosinolate content.  相似文献   

18.
Junyi Chen  Li Xu  Yilin Cai  Jun Xu 《Plant and Soil》2008,313(1-2):251-266
The phosphorus efficiency, relative biologic characteristics and relative root exudations as well as the quantitative trait loci associated with these traits were determined for an F2:3 population derived from the cross of two contrasting maize (Zea mays L.) genotypes, 082 and Ye107. A total of 241 F2:3 families were evaluated in replicated trials under normal phosphorus (50 kg P/ha) and low phosphorus (0 kg P/ha) conditions in 2007 at two sites (Kaixian and Southwest University). The genetic map constructed by 275 SSR and 146 AFLP markers spanned 1,681.3 cM in length with an average interval of 3.84 cM. The heritability of PE, PAE, RPH, RBW, RRW, RLA, TPS, RTW, RFN, RAP and RH was all high ( $h_{\text{b}}^2 > 60\% $ ) whereas the heritability of root exudations was all low ( $h_{\text{b}}^2 > 60\% $ ).By using composite interval mapping (CIM), a total of 30 and 45 distinct QTLs were identified at Kaixian and Southwest University. At two sites, the number of same QTL located on common region was 16, five for PE (bins 1.07, 4.09, 5.05, 5.07, 5.08), three for RBW (bins 3.04, 5.04, 6.05), three for RRW (bins 5.05, 5.06, 5.07), one for RLA (bins 3.04), two for TPS (bins 3.08, 5.07), two for RTW (bins 5.05, 5.06). These QTLs explained 21% of the phenotypic variation of PE, 5–9% of RBW, 13–16% of RRW, 9% of TPS, 7% of RTW, respectively. The 16 common QTLs displayed mostly partial dominance or over-dominance gene action. Most QTL alleles conferring high values for the traits came from two parents. Mapping analysis identified chromosomal regions associated with two or more traits in a cluster, which was consistent with correlation among traits. The result showed either pleiotropy or tight linkage among QTL. Five common regions for same QTL at different site were found in the interval bnlg1556-bnlg1564 (bins 1.06), mmc0341-umc1101 (bins 4.08), mmc0282-phi333597 (bins 5.05), bnlg1346-bnlg1695 (bins 5.07) and bnlg118a-umc2136 (bins 5.08), which were important for PE. The information reported in the present paper may be useful for improving phosphorus efficiency by means of marker-assisted selection.  相似文献   

19.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

20.

Key message

Using combined linkage and association mapping, 26 stable QTL and six stable SNPs were detected across multiple environments for eight ear and grain morphological traits in maize. One QTL, PKS2, might play an important role in maize yield improvement.

Abstract

In the present study, one bi-parental population and an association panel were used to identify quantitative trait loci (QTL) for eight ear and grain morphological traits. A total of 108 QTL related to these traits were detected across four environments using an ultra-high density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319, and 26 QTL were identified in more than two environments. Furthermore, 64 single nucleotide polymorphisms (SNPs) were found to be significantly associated with the eight ear and grain morphological traits (?log10(P)?>?4) in an association panel of 240 maize inbred lines. Combining the two mapping populations, a total of 17 pleiotropic QTL/SNPs (pQTL/SNPs) were associated with various traits across multiple environments. PKS2, a stable locus influencing kernel shape identified on chromosome 2 in a genome-wide association study (GWAS), was within the QTL confidence interval defined by the RILs. The candidate region harbored a short 13-Kb LD block encompassing four SNPs (SYN11386, PHM14783.16, SYN11392, and SYN11378). In the association panel, 13 lines derived from the hybrid PI78599 possessed the same allele as Qi319 at the PHM14783.16 (GG) locus, with an average value of 0.21 for KS, significantly lower than that of the 34 lines derived from Ye478 that carried a different allele (0.25, P?<?0.05). Therefore, further fine mapping of PKS2 will provide valuable information for understanding the genetic components of grain yield and improving molecular marker-assisted selection (MAS) in maize.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号