首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
免疫突触(immunological synapse,IS)是抗原提呈细胞与T细胞免疫识别时,多种分子参与、分阶段不断变化的过程,涉及黏附分子、细胞因子、信号传导分子、细胞骨架蛋白等多分子的聚集或离散.其形成不仅促进T细胞和抗原提呈细胞的稳定接触,而且激活T细胞信号传导途径,促进T细胞的活化和增殖.对IS的研究可以从分子水平解释免疫激活、免疫耐受、病原微生物感染与免疫细胞相互作用的机制,为进一步揭示疾病发生的分子机制,寻求疾病防治的靶向分子提供新的思路.近年来,光学成像的发展为可视化研究IS形成与T细胞活化的关系提供了有力帮助,为研究生理病理状态下的免疫应答提供了有力工具.  相似文献   

2.
T细胞是通过其表面受体-T细胞抗原特异性受体(T cell antigen specific receptor,TCR)识别抗原并进行免疫应答的.T细胞如何识别以及清除抗原一直是分子免疫学研究的重点.免疫应答的重要过程是淋巴细胞的活化.而T细胞活化是细胞介导的免疫应答中不可缺少的内容.鉴于T细胞抗原识别和活化在免疫应答中的重要性.对近年来T细胞在抗原识别与活化研究方面所取得的重要进展进行了综述,并展望了T细胞的研究前景.  相似文献   

3.
唐古生  沈茜 《生命的化学》2008,28(2):172-174
共刺激分子免疫球蛋白家族-B7家族成员与CD28家族成员之间相互作用向T细胞传递共刺激信号,在T细胞充分活化和功能发挥中发挥了重要的功能.近几年研究表明,部分B7家族成员向T细胞传递免疫信号的同时,也向表达B7分子的抗原提呈细胞传递反向信号,增强或抑制了抗原提呈细胞的功能,并进一步在维持T细胞免疫和T细胞耐受中发挥重要的功能.  相似文献   

4.
脂筏与T细胞信号转导   总被引:2,自引:0,他引:2  
抗原提呈细胞将抗原加工处理后通过MHCⅠ/MHCⅡ类分子提呈供T细胞识别。TCR对抗原的识别引起一系列下游信号事件的发生,最终使T细胞激活,但对TCR复合物结合抗原后引起胞内区磷酸化的早期事件机制还不是很清楚。最近的研究揭示脂筏参与了这一早期信号事件的发生。脂筏是一种膜脂双层内含有的特殊微区,T细胞膜表面参与T细胞激活的各种关键信号分子都定位于脂筏。T细胞激活过程中脂筏通过聚集和重分配形成一个信号转导的平台。  相似文献   

5.
众所周知,辅助T细胞在淋巴结中识别树突细胞或B细胞表面的MHCⅡ分子呈递的抗原而被激活,从而启动免疫应答的后续步骤。但是MHCⅡ分子所呈递的绝大部分是自身抗原,大多数时候辅助T细胞只能遇到这样的MHCⅡ分子而不能激活。那么自身抗原在免疫应答中有什么意义呢?最近的一项研究中,Fischer及其同事首先报道了自身抗原在免疫应答中的作用。  相似文献   

6.
Toll样受体(Toll-like receptors, TLRs)在先天免疫系统中广泛表达,可通过促进抗原提呈细胞(antigen presenting cells,APC)共刺激分子的表达从而间接导致T细胞活化。然而研究发现,TLR也可在T细胞中表达,并可在没有APC的情况下直接调节T细胞的代谢与功能。本文综述了TLR信号对不同T细胞亚群代谢和免疫功能的直接调控作用,为T细胞介导的癌症及自身免疫病等疾病的预防和治疗提供了新的思路。  相似文献   

7.
T细胞和APC细胞相互作用形成免疫突触涉及到连续发生的一系列的分子识别事件,最初APC细胞在趋化因子的作用下向T细胞移动,相遇后在抗原非依赖性的弱的黏附力作用下发生最初的黏附,同时伴随着TCR在APC表面俘获特异性抗原;抗原识别之后,由多种机制使T细胞和APC紧密接触并维持一段时间,随后分开,最终引起T细胞的增殖和分化。对免疫突触形成过程中的分子识别机制目前尚无定论,拓扑模式和数学模式的解释,脂筏和细胞骨架蛋白的重排以及接头蛋白的连接为免疫突触形成中分子的识别提供了一定的依据。  相似文献   

8.
唐古生  沈茜 《生命的化学》2008,28(4):172-174
共刺激分子免疫球蛋白家族—B7家族成员与CD28家族成员之间相互作用向T细胞传递共刺激信号,在T细胞充分活化和功能发挥中发挥了重要的功能。近几年研究表明,部分B7家族成员向T细胞传递免疫信号的同时,也向表达B7分子的抗原提呈细胞传递反向信号,增强或抑制了抗原提呈细胞的功能,并进一步在维持T细胞免疫和T细胞耐受中发挥重要的功能。  相似文献   

9.
树突状细胞免疫调节作用及其信号转导机制   总被引:2,自引:0,他引:2  
Xu S  Yao YM  Sheng ZY 《生理科学进展》2006,37(4):313-318
树突状细胞(DC)是最强效的抗原提呈细胞。,在抗原的刺激下,DC通过趋化因子作用由外周组织迁移至淋巴组织和器官,同时上调主要组织相容性复合体分子、共刺激分子和黏附分子的表达,分泌细胞因子,获得预激幼稚T细胞的独特能力。DC通过不同的受体吞饮、吞噬和胞吞抗原,例如C型凝集素受体捕获和呈递抗原,通过Toll样受体识别病原体和激活DC。本文主要综述了DC的免疫调节效应及其不同病原体识别受体活化和细胞内信号机制。  相似文献   

10.
CD28协同刺激信号传导的研究进展   总被引:1,自引:0,他引:1  
T细胞表面分子CD28介导的协同刺激信号在T细胞的激活、增殖、抗凋亡及促进多种细胞因子的分泌中起重要作用。有关其活化信号在T细胞内的传导巳成为免疫研究的热点,近年的研究表明,CD28在T细胞内可通过多种信号传导分子,如P13K、GRB2、A-SMase、PKC-θ等传导活化信号,亦可通过ITK、MKP等传导活化抑制信号,从而调控T细胞的活化,增殖等作用。  相似文献   

11.
The onset of an adaptive immune response requires the activation of T and B lymphocytes by antigen-presenting cells, through a specialized form of intercellular communication, known as the immunological synapse (IS). In B lymphocytes the IS promotes efficient recognition and acquisition of membrane-bound Ags, while in T cells, it modulates the T cell response upon exposure to peptide-major histocompatibility complexes. In this review, we highlight the similarities that determine B and T cell activation, focusing on immune receptor downstream signaling events that lead to synapse formation. We stress the notion that polarization of T and B lymphocytes characterized by global changes in cytoskeleton and membrane trafficking modulates synapse structure and function, thus determining lymphocyte effector functions and fate.  相似文献   

12.
Formation of an immunological synapse (IS) between APCs and T CD4(+) lymphocytes is a key event in the initiation and the termination of the cognate immune response. We have analyzed the contribution of the APC to IS formation and report the implication of the actin cytoskeleton, the signaling proteins and the lipid rafts of B lymphocytes. Recruitment of MHC class II molecules to the IS is concomitant with actin cytoskeleton-dependent B cell raft recruitment. B cell actin cytoskeleton disruption abrogates both IS formation and T cell activation, whereas protein kinase C inhibition only impairs T cell activation. Pharmacological B cell lipid raft disruption inhibited peptide-dependent T lymphocyte activation and induced peptide-independent but HLA-DR-restricted APC-T cell conjugate formation. Such peptide-independent conjugates did not retain the ability to activate T cells. Thus, B cell lipid rafts are bifunctional by regulating T cell activation and imposing peptide stringency.  相似文献   

13.
The translocation of the microtubule-organizing center (MTOC) toward the nascent immune synapse (IS) is an early step in lymphocyte activation initiated by T cell receptor (TCR) signaling. The molecular mechanisms that control the physical movement of the lymphocyte MTOC remain largely unknown. We have studied the role of the dynein–dynactin complex, a microtubule-based molecular motor, in the process of T cell activation during T cell antigen–presenting cell cognate immune interactions. Impairment of dynein–dynactin complex activity, either by overexpressing the p50-dynamitin component of dynactin to disrupt the complex or by knocking down dynein heavy chain expression to prevent its formation, inhibited MTOC translocation after TCR antigen priming. This resulted in a strong reduction in the phosphorylation of molecules such as ζ chain–associated protein kinase 70 (ZAP70), linker of activated T cells (LAT), and Vav1; prevented the supply of molecules to the IS from intracellular pools, resulting in a disorganized and dysfunctional IS architecture; and impaired interleukin-2 production. Together, these data reveal MTOC translocation as an important mechanism underlying IS formation and sustained T cell signaling.  相似文献   

14.
An efficient adaptive immune response should prevent pathogen infections and tumor growth without causing significant damage to host constituents. A crucial event determining the balance between tolerance and immunity is antigen recognition by T cells on the surface of antigen presenting cells (APC). Several molecular contacts at the interface between T cells and APCs contribute to define the nature of the adaptive immune response against a particular antigen. Upon TCR engagement by a peptide-MHC complex (pMHC) on the surface of an APC, a specialized supra-molecular structure known as immunological synapse (IS) assembles at the interface between these two cells. This structure involves massive re-distribution of membrane proteins, including TCR and pMHC complexes, as well as co-stimulatory and adhesion molecules. Furthermore, IS assembly leads to several important intracellular events necessary for T cell activation, such as recruitment of signaling molecules and cytoskeleton rearrangements. Because IS assembly leads to major consequences on the function of T cells, several studies have attempted to identify both soluble and membrane-bound molecules that could contribute to modulate the IS function. Here we describe recent literature on the regulation of IS assembly and modulation by TCR/pMHC binding kinetics, chemokines and cytokines focusing on their role at controlling the balance between adaptive immunity and tolerance.  相似文献   

15.
B cells form an essential part of the adaptive immune system by producing specific antibodies that can neutralize toxins and target infected or malignant cells for destruction. During B cell activation, a fundamental role is played by a specialized intercellular structure called the immunological synapse (IS). The IS serves as a platform for B cell recognition of foreign, often pathogenic, antigens on the surface of antigen‐presenting cells (APC). This recognition is elicited by highly specific B cell receptors (BCR) that subsequently trigger carefully orchestrated intracellular signaling cascades that lead to cell activation. Furthermore, antigen internalization, essential for full B cell activation and differentiation into antibody producing effector cells or memory cells, occurs in the IS. Recent developments especially in various imaging‐based methods have considerably advanced our understanding of the molecular control of B cell activation. Interestingly, the cellular cytoskeleton is emerging as a key player at several stages of B cell activation, including the initiation of receptor signaling. Here, we discuss the functions and molecular mechanisms of the IS and highlight the multifaceted role of the actin cytoskeleton in several aspects of B cell activation.   相似文献   

16.
B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters with the CD3zeta and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRzeta accumulation in the lipid raft.  相似文献   

17.
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling.  相似文献   

18.
Yeh JH  Sidhu SS  Chan AC 《Cell》2008,132(5):846-859
Spatial organization of cellular proteins plays an important role in establishment of cellular polarity to regulate cell division, differentiation, migration, and organogenesis. Activation of T cells by antigen-presenting cells (APCs) results in the formation of an immunological synapse (IS), assembly of a signaling scaffold at the T cell receptor (TCR) contact, cytoskeletal reorganization, and generation of second messengers within the first hours following intercellular contact. We demonstrate here that Crtam (class-I MHC-restricted T-cell associated molecule), an immunoglobulin-superfamily transmembrane protein, coordinates a signaling complex anchored by the Scrib polarity protein to establish a later phase of T cell polarity on a subset of CD4+ T cells >6 hours following activation. Maintenance of this late cellular polarity results in the ability of CD4+Crtam+ T cells to selectively produce more IFNgamma and IL22. Crtam engagement thus modulates signals many hours beyond the initial activation event and dynamically influences the adaptive immune response.  相似文献   

19.
Reorganization of actin cytoskeletal dynamics plays a critical role in controlling T-lymphocyte activation and effector functions. Interaction of T-cell receptors (TCR) with appropriate major histocompatibility complex-peptide complexes on antigen-presenting cells results in the activation of signaling cascades, leading to the accumulation of F-actin at the cell-cell contact site. This event is required for the formation and stabilization of the immune synapse (IS), a cellular structure essential for the modulation of T-cell responses. Analysis of actin cytoskeletal dynamics following engagement of the TCR has largely focused on the Arp2/3 regulator, WASp, because of its early identification and its association with human disease. However, recent studies have shown equally important roles for several additional actin regulatory proteins. In this review, we turn the spotlight on the expanding cast of actin regulatory proteins, which co-ordinate actin dynamics at the IS.  相似文献   

20.
T cell-APC contact initiates T cell activation and is maintained by the integrin LFA-1. Talin1, an LFA-1 regulator, localizes to the immune synapse (IS) with unknown roles in T cell activation. In this study, we show that talin1-deficient T cells have defects in contact-dependent T cell stopping and proliferation. Although talin1-deficient T cells did not form stable interactions with APCs, transient contacts were sufficient to induce signaling. In contrast to prior models, LFA-1 polarized to T cell-APC contacts in talin1-deficient T cells, but vinculin and F-actin polarization at the IS was impaired. These results indicate that T cell proliferation requires sustained, talin1-mediated T cell-APC interactions and that talin1 is necessary for F-actin polarization and the stability of the IS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号