首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Macrophage foam cells, a major component of the atherosclerotic lesion, have vital roles in the development of atherosclerosis. Lipoautophagy, a type of autophagy characterized by selective delivery of lipid droplet for lysosomal degradation, may impact atherosclerosis by regulating macrophage foam cell formation. Previously, we reported that programmed cell death 4 (PDCD4), a tumor suppressor, negatively regulated autophagy in tumor cells. However, its roles in macrophage lipoautophagy, foam cell formation and atherosclerosis remain to be established. Here we found that Pdcd4 deficiency clearly improved oxidized low-density lipoproteins-impaired autophagy efflux, promoted autophagy-mediated lipid breakdown in murine macrophages and thus prevented macrophage conversion into foam cells. Importantly, Pdcd4 deficiency in mice significantly upregulated macrophage autophagy in local plaques along with attenuated lipid accumulation and atherosclerotic lesions in high-fat-fed Apolipoprotein E knockout mice. Bone marrow transplantation experiment demonstrated that PDCD4-mediated autophagy in hematopoietic cells contributed to the development of atherosclerosis. These results indicate that endogenous PDCD4 promotes for macrophage foam cell formation and atherosclerosis development via inhibiting autophagy and provides new insights into atherogenesis, suggesting that promoting macrophage autophagy through downregulating PDCD4 expression may be beneficial for treating atherosclerosis.Atherosclerosis is a lipid dysfunction-derived chronic inflammatory process in large and medium arterial wall.1 Macrophage foam cell, as a major component in the lesion of atherosclerosis, has vital role in the development of atherosclerosis. In the initial step of atherosclerotic development, circulating monocytes migrate into arterial wall via dysfunctional endothelial cells and differentiate into macrophages.2, 3, 4 The infiltrated macrophages ingest and digest oxidized low-density lipoprotein (ox-LDL), and then transport lipid out of vascular wall.5 However, macrophage with overloaded lipids stored in the form of lipid droplets (LDs) will transform into foam cells. Macrophage foam cell formation could promote the development of atherosclerosis.6 Thus, decreasing the formation of macrophage foam cell would be an attractive strategy to reverse plaque lipid buildup.7The macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved and well-controlled cellular catabolic process. During the process, cytoplasmic components are sequestered in double-membrane vesicles (which is called autophagosome) and degraded by fusion with lysosomal compartments (autophagolysosome) for recycling application.8 The process of autophagy is regulated by several autophagy-related genes (ATGs) encoded proteins, such as ATG5, ATG6 (also known as BECN1), ATG8 (also known as microtubule-associated protein 1 light chain 3, LC3) and ATG12. ATG5 is involved in the early stage of autophagosome formation. ATG5 is conjugated with ATG12 and ATG16L to form ATG12–ATG5–ATG16L complex, which contributes to the elongation and closure of the autophagosomes in the generation of lipidated forms of LC3 family proteins.9 Lipoautophagy, a type of autophagy that selectively delivers LDs for lysosomal degradation,10 regulates lipid metabolism and is involved in the process of atherosclerosis.11, 12, 13, 14 In advanced atherosclerosis, macrophage autophagy becomes dysfunctional. However, the basic autophagy deficiency in macrophage by specific Atg5 knockout accelerates atherosclerotic plaques in high-fat-fed ldlr−/− mice via promoting oxidative stress, plaque necrosis12 or inflammasome hyperactivation.13 More interestingly, autophagy can enhance brokendown of lipid in LD, cholesterol efflux from macrophage foam cells and further inhibit atherogenisis.14 Stent-based delivery of everolimus (mTOR inhibitor) in atherosclerotic plaques of cholesterol-fed rabbits leads to a marked reduction of macrophages via autophagic cell death.15 Therefore, regulating the level of macrophage autophagy and macrophage conversion into foam cells would be a potential target for preventing the atherosclerotic plaques formation.16Programmed cell death 4 (PDCD4), an inhibitor of protein translation, inhibits translation initiation via binding to the translation initiation factor eIF4A or translation elongation by direct or indirectly binding to the coding region of specific RNAs.17, 18 Accumulated evidence has demonstrated PDCD4 as a tumor suppressor.19 PDCD4 can inhibit promotion and progression of tumors, such as lung cancer,20 hepatocellular carcinoma cells,21 colon cancer,22 ovarian cancer23 and glioma.24 In addition, it has been reported that PDCD4 is also involved in the development of inflammatory diseases.25, 26, 27, 28, 29, 30 For example, Pdcd4-deficient mice are resistant to experimental allergic encephalitis,25 LPS-induced endotoxin shock26 and type-1 diabetes.27 In addition, Pdcd4-deficient mice are sensitive to LPS/D-galactosamine-induced acute liver injury.28 Recently, we reported that Pdcd4 deficiency attenuated adipocyte foam cells, diet-induced obesity, obesity-associated inflammation and insulin resistance,29 and increased IL-10 expression by macrophages that partly involved in atherosclerosis in hyperlipidemic mice,30 suggesting that PDCD4 may be involved in the metabolism-related diseases. Furthermore, we found that PDCD4 negatively regulated autophagy by inhibiting ATG5 expression in tumor cells.31 However, its role in macrophage lipoautophagy and foam formation, and association with atherosclerosis remain to be investigated.In the present study, we found that Pdcd4 deficiency improved ox-LDL-impaired autophagy efflux in murine macrophage and subsequently attenuated macrophage conversion into foam cells in an autophagy-dependent manner and further attenuated the formation of atherosclerotic lesions in hyperlipidemia mice. These results indicate that PDCD4 is critical for macrophage foam cell formation in atherosclerosis development and provides new insights into atherogenesis, and potential therapeutic avenues to treat atherosclerosis-associated diseases.  相似文献   

4.
Transforming growth factor-β1 (TGF-β1) is an important regulator of fibrogenesis in heart disease. In many other cellular systems, TGF-β1 may also induce autophagy, but a link between its fibrogenic and autophagic effects is unknown. Thus we tested whether or not TGF-β1-induced autophagy has a regulatory function on fibrosis in human atrial myofibroblasts (hATMyofbs). Primary hATMyofbs were treated with TGF-β1 to assess for fibrogenic and autophagic responses. Using immunoblotting, immunofluorescence and transmission electron microscopic analyses, we found that TGF-β1 promoted collagen type Iα2 and fibronectin synthesis in hATMyofbs and that this was paralleled by an increase in autophagic activation in these cells. Pharmacological inhibition of autophagy by bafilomycin-A1 and 3-methyladenine decreased the fibrotic response in hATMyofb cells. ATG7 knockdown in hATMyofbs and ATG5 knockout (mouse embryonic fibroblast) fibroblasts decreased the fibrotic effect of TGF-β1 in experimental versus control cells. Furthermore, using a coronary artery ligation model of myocardial infarction in rats, we observed increases in the levels of protein markers of fibrosis, autophagy and Smad2 phosphorylation in whole scar tissue lysates. Immunohistochemistry for LC3β indicated the localization of punctate LC3β with vimentin (a mesenchymal-derived cell marker), ED-A fibronectin and phosphorylated Smad2. These results support the hypothesis that TGF-β1-induced autophagy is required for the fibrogenic response in hATMyofbs.Interstitial fibrosis is common to many cardiovascular disease etiologies including myocardial infarction (MI),1 diabetic cardiomyopathy2 and hypertension.3 Fibrosis may arise due to maladaptive cardiac remodeling following injury and is a complex process resulting from activation of signaling pathways, such as TGF-β1.4 TGF-β1 signaling has broad-ranging effects that may affect cell growth, differentiation and the production of extracellular matrix (ECM) proteins.5, 6 Elevated TGF-β1 is observed in post-MI rat heart7 and is associated with fibroblast-to-myofibroblast phenoconversion and concomitant activation of canonical Smad signaling.8 The result is a proliferation of myofibroblasts, which then leads to inappropriate deposition of fibrillar collagens, impaired cardiac function and, ultimately, heart failure.9, 10Autophagy is necessary for cellular homeostasis and is involved in organelle and protein turnover.11, 12, 13, 14 Autophagy aids in cell survival by providing primary materials, for example, amino acids and fatty acids for anabolic pathways during starvation conditions.15, 16 Alternatively, autophagy may be associated with apoptosis through autodigestive cellular processes, cellular infection with pathogens or extracellular stimuli.17, 18, 19, 20 The overall control of cardiac fibrosis is likely due to the complex functioning of an array of regulatory factors, but to date, there is little evidence linking autophagy with fibrogenesis in cardiac tissue.11, 12, 13, 14, 15, 16, 17, 18, 21, 22Recent studies have demonstrated that TGF-β1 may not only promote autophagy in mouse fibroblasts and human tubular epithelial kidney cells15, 23, 24 but can also inhibit this process in fibroblasts extracted from human patients with idiopathic pulmonary fibrosis.25 Moreover, it has recently been reported that autophagy can negatively15 and positively25, 26, 27 regulate the fibrotic process in different model cell systems. In this study, we have explored the putative link between autophagy and TGF-β1-induced fibrogenesis in human atrial myofibroblasts (hATMyofbs) and in a model of MI rat heart.  相似文献   

5.
Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants.An emerging theme in cell death research is that cellular processes thought to be regulated by linear signaling pathways are, in fact, complex. Autophagy, initially considered merely a nutrient recycling mechanism necessary for cellular homeostasis, was recently shown to regulate cell death, mechanistically interacting with components that control apoptosis. Deficient autophagy can result in apoptosis1, 2, 3 and autophagy hyper-activation can also lead to programmed cell death (PCD).4 In addition, the pro-survival function of autophagy is mediated by apoptosis inhibition and apoptosis mediates autophagy, although this cross-regulation is not fully understood.5In plants, autophagy can also have both pro-survival and pro-death functions. Autophagy-deficient plants exhibit accelerated senescence,6, 7, 8 starvation-induced chlorosis,6, 7, 9 hypersensitivity to oxidative stress10 and endoplasmic reticulum stress.11 Further, autophagy-deficient plants cannot limit the spread of cell death after infection with tissue-destructive microbial infections.12, 13 The plant phytohormone salicylic acid (SA) mediates most of these phenotypes.8 Autophagy has an essential, pro-survival role in situations where there is an increasing load of damaged proteins and organelles that need to be eliminated, that is, during aging or stress. Autophagy has an opposing, pro-death role during developmentally regulated cell death14, 15 or during the pathogen-triggered hypersensitive response PCD (hereafter, HR) that occurs locally at the site of attempted pathogen attack.16, 17 The dual pro-death/pro-survival functions of plant autophagy remain a topic of active debate.Also under scrutiny are possible novel functions of caspases and caspase-like proteins as central regulators of pro-survival processes. Caspases were originally defined as executioners of PCD in animals, but increasing evidence indicates that several caspases have non-apoptotic regulatory roles in cellular differentiation, motility and in the mammalian immune system.18, 19, 20Yeast, protozoa and plants do not have canonical caspases, despite the occurrence of morphologically heterogeneous PCDs.21 More than a decade ago, distant caspase homologs termed metacaspases were identified in these organisms using structural homology searches.22 Metacaspases were classified into type I or type II metacaspases based on the presence or absence of an N-terminal prodomain, reminiscent of the classification in animals into initiator/inflammatory or executioner caspases, respectively. Despite the architectural analogy between caspases and metacaspases, differences in their structure, function, activation and mode of action exist.23, 24, 25Metacaspases mediate PCD in yeast,26, 27, 28, 29, 30, 31 leishmania,32, 33 trypanosoma34 and plants.24 We demonstrated that two type I metacaspases, AtMC1 and AtMC2, antagonistically regulate HR in Arabidopsis thaliana.35 Our work showed that AtMC1 is a positive regulator of HR and that this function is mediated by its catalytic activity and negatively regulated by the AtMC1 N-terminal prodomain. AtMC2 antagonizes AtMC1-mediated HR.Besides AtMC2, new examples of metacaspases with a pro-life/non-PCD role are emerging. Protozoan metacaspases are involved in cell cycle dynamics34, 36, 37, 38 and cell proliferation.39 The yeast metacaspase Yca1 alters cell cycle dynamics40 and interestingly, is required for clearance of insoluble protein aggregates, thus contributing to yeast fitness.41Here, we explore the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered HR and aging. Our data support a model wherein autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants and negatively regulating senescence in older plants.  相似文献   

6.
7.
Reactive oxygen species (ROS) may cause cellular damage and oxidative stress-induced cell death. Autophagy, an evolutionarily conserved intracellular catabolic process, is executed by autophagy (ATG) proteins, including the autophagy initiation kinase Unc-51-like kinase (ULK1)/ATG1. Although autophagy has been implicated to have both cytoprotective and cytotoxic roles in the response to ROS, the role of individual ATG proteins, including ULK1, remains poorly characterized. In this study, we demonstrate that ULK1 sensitizes cells to necrotic cell death induced by hydrogen peroxide (H2O2). Moreover, we demonstrate that ULK1 localizes to the nucleus and regulates the activity of the DNA damage repair protein poly (ADP-ribose) polymerase 1 (PARP1) in a kinase-dependent manner. By enhancing PARP1 activity, ULK1 contributes to ATP depletion and death of H2O2-treated cells. Our study provides the first evidence of an autophagy-independent prodeath role for nuclear ULK1 in response to ROS-induced damage. On the basis of our data, we propose that the subcellular distribution of ULK1 has an important role in deciding whether a cell lives or dies on exposure to adverse environmental or intracellular conditions.Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2), are formed by the incomplete reduction of oxygen during oxidative phosphorylation and other enzymatic processes. ROS are signaling molecules that regulate cell proliferation, differentiation, and survival.1, 2, 3 Accumulation of ROS (i.e., oxidative stress) on exposure to xenobiotic agents or environmental toxins can cause cellular damage and death via apoptotic or nonapoptotic pathways.4, 5, 6 Oxidative stress-induced cellular damage and death have been implicated in aging, ischemia-reperfusion injury, inflammation, and the pathogenesis of diseases (e.g., neurodegeneration and cancer).7 Oxidative stress also contributes to the antitumor effects of many chemotherapeutic drugs, including camptothecin8, 9 and selenite.10, 11Autophagy, an evolutionarily conserved intracellular catabolic process, involves lysosome-dependent degradation of superfluous and damaged cytosolic organelles and proteins.12 It is typically upregulated under conditions of perceived stress and in response to cellular damage. The consequence of autophagy activation – whether cytoprotective or cytotoxic – appears to depend on the cell type and the nature and extent of stress. Although most studies indicate a cytoprotective role for autophagy, some evidence suggests that it contributes to cell death in response to oxidative stress.13, 14, 15, 16, 17 Studies have also indicated that autophagy may be suppressed in response to oxidative stress, thereby sensitizing certain cells to apoptosis.18, 19 Unc-51-like kinase/autophagy 1 (ULK1/ATG1) is a mammalian serine–threonine kinase that regulates flux through the autophagy pathway by activating the VPS34 PI(3) kinase complex and facilitating ATG9-dependent membrane recycling.20 Results from two studies suggest that ULK1 expression is altered in response to oxidative stress, and that the corresponding effects on autophagy contribute to cell death.18, 21For example, p53-mediated upregulation of ULK1 and increase in autophagy promote cell death in osteosarcoma cells exposed to sublethal doses of camptothecin,21 yet mutant p53-mediated suppression of ULK1 impairs autophagic flux and promotes apoptosis in selenite-treated NB4 cells.18 Here we investigated the role of ULK1 in cells exposed to H2O2.  相似文献   

8.
Damage and loss of the postmitotic photoreceptors is a leading cause of blindness in many diseases of the eye. Although the mechanisms of photoreceptor death have been extensively studied, few studies have addressed mechanisms that help sustain these non-replicating neurons for the life of an organism. Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomal pathway for degradation. It is not only a major pathway activated in response to cellular stress, but is also important for cytoplasmic turnover and to supply the structural and energy needs of cells. We examined the importance of autophagy in photoreceptors by deleting the essential autophagy gene Atg5 specifically in rods. Loss of autophagy led to progressive degeneration of rod photoreceptors beginning at 8 weeks of age such that by 44 weeks few rods remained. Cone photoreceptor numbers were only slightly diminished following rod degeneration but their function was significantly decreased. Rod cell death was apoptotic but was not dependent on daily light exposure or accelerated by intense light. Although the light-regulated translocation of the phototransduction proteins arrestin and transducin were unaffected in rods lacking autophagy, Atg5-deficient rods accumulated transducin-α as they degenerated suggesting autophagy might regulate the level of this protein. This was confirmed when the light-induced decrease in transducin was abolished in Atg5-deficient rods and the inhibition of autophagy in retinal explants cultures prevented its degradation. These results demonstrate that basal autophagy is essential to the long-term health of rod photoreceptors and a critical process for maintaining optimal levels of the phototransduction protein transducin-α. As the lack of autophagy is associated with retinal degeneration and altered phototransduction protein degradation in the absence of harmful gene products, this process may be a viable therapeutic target where rod cell loss is the primary pathologic event.Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomes for degradation. Defective autophagy can contribute to the age-dependent accumulation of damaged proteins and organelles leading to altered cellular homeostasis and loss of function.1, 2, 3, 4, 5 The metabolic roles of autophagy can be classified into two types, basal and induced. In nutrient-rich conditions, autophagy is suppressed but still occurs at low levels (basal autophagy); however, when cells are subjected to stress (starvation, injury, hypoxia), autophagy is activated immediately (induced autophagy).6 Induced autophagy maintains the amino acid pool inside cells to adapt to starvation while constitutive autophagy has been shown to function as a cell-repair mechanism that is important for long-lived postmitotic cells.7, 8, 9, 10, 11 Defects in autophagy have been associated with neurodegenerative diseases,12, 13, 14, 15 diabetes,16, 17 lysosomal storage disease18 and the loss of vision.19 In addition to macroautophagy, microautophagy and chaperone-mediated autophagy (CMA) have been described. Although little is known about microautophagy in mammalian cells, macroautophagy (hereafter autophagy) is a major pathway for bulk degradation of cytoplasmic components. CMA is a more selective pathway for degradation of cytosolic proteins that can compensate for the loss of macroautophagy.2, 20, 21, 22Inherited retinal degenerative diseases such as retinitis pigmentosa or Leber''s congenital amaurosis are characterized by premature and progressive death of rod and cone photoreceptor cells.23 These diseases are characterized by the loss of night vision due to the death of rods followed by the loss of cones leading to diminished visual acuity and a reduction in the quality of life for patients. Disease is typically associated with the production of harmful gene products that promote pathology by inhibiting critical pathways resulting in cell death.24, 25, 26 Strategies to prevent photoreceptor death during retinal degenerative disease such as gene replacement therapies or inhibition of cell death pathways have been undertaken with some success;27, 28, 29 however, effective treatments for these blinding disorders are lacking.Another strategy that could be used in conjunction with other therapies might be to enhance survival by stimulating autophagy. Augmenting autophagy would increase the supply of nutrients to stressed cells and accelerate removal of damaged proteins thereby prolonging cell survival beyond what would be possible by only preventing cell death. Although canonical22, 30, 31, 32, 33 and noncanonical autophagic mechanisms34 have been detected in the eye, our knowledge of basic autophagy functions in this organ is still limited. In order to understand how autophagy maintains retinal homeostasis and function, we undertook studies to examine the consequences of deleting the essential autophagy gene Atg5 in rod photoreceptors.  相似文献   

9.
Autophagy is a catabolic mechanism facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner. Autophagy flux is necessary for normal neuronal homeostasis and its dysfunction contributes to neuronal cell death in several neurodegenerative diseases. Elevated autophagy has been reported after spinal cord injury (SCI); however, its mechanism, cell type specificity and relationship to cell death are unknown. Using a rat model of contusive SCI, we observed accumulation of LC3-II-positive autophagosomes starting at posttrauma day 1. This was accompanied by a pronounced accumulation of autophagy substrate protein p62, indicating that early elevation of autophagy markers reflected disrupted autophagosome degradation. Levels of lysosomal protease cathepsin D and numbers of cathepsin-D-positive lysosomes were also decreased at this time, suggesting that lysosomal damage may contribute to the observed defect in autophagy flux. Normalization of p62 levels started by day 7 after SCI, and was associated with increased cathepsin D levels. At day 1 after SCI, accumulation of autophagosomes was pronounced in ventral horn motor neurons and dorsal column oligodendrocytes and microglia. In motor neurons, disruption of autophagy strongly correlated with evidence of endoplasmic reticulum (ER) stress. As autophagy is thought to protect against ER stress, its disruption after SCI could contribute to ER-stress-induced neuronal apoptosis. Consistently, motor neurons showing disrupted autophagy co-expressed ER-stress-associated initiator caspase 12 and cleaved executioner caspase 3. Together, these findings indicate that SCI causes lysosomal dysfunction that contributes to autophagy disruption and associated ER-stress-induced neuronal apoptosis.In the United States, spinal cord injury (SCI) has an annual incidence of 11 000 and prevalence of nearly 500 000. Neuronal cell death is an important contributor to SCI-induced neurological deficits. Many of the affected neurons do not die because of direct mechanical damage but rather show delayed cell death as a result of injury-induced biochemical changes (secondary injury).1, 2, 3, 4 Thus, blocking or attenuating secondary neuronal death may serve to limit posttraumatic disabilities.Macroautophagy (hereafter called autophagy) is a lysosome-dependent catabolic pathway degrading cytoplasmic proteins, protein aggregates and organelles.5, 6, 7 Autophagy is initiated by the formation of autophagosomes, double membrane vesicles containing cytoplasmic components that include potentially toxic protein aggregates and damaged organelles. Autophagosomes then fuse with lysosomes to allow degradation of their contents by lysosomal hydrolases.8, 9, 10, 11 This progress of cargo, from sequestration in autophagosomes, to their delivery and degradation in lysosomes, is termed autophagy flux. Autophagy flux is important for homeostasis in all cells but appears especially critical in terminally differentiated cells such as neurons.12, 13 It is also upregulated, and often plays a protective function, in response to cell injury.14, 15 For example, autophagy is activated in response to and can limit effects of homeostasis perturbation in the endoplasmic reticulum (ER stress).16, 17 Thus, autophagy plays an important neuroprotective function, while impaired autophagy flux has been implicated in neurodegenerative disorders such as Parkinson''s and Alzheimer''s diseases.18, 19, 20, 21Upregulation of autophagy markers has been observed after SCI,22, 23 but its mechanisms and function remain controversial, with both beneficial and detrimental roles proposed. Under certain circumstances, pathologically increased autophagy can contribute to cell death,21, 24 particularly when autophagy flux is blocked, for example, because of lysosomal defects. Defects in autophagy flux can also exacerbate ER stress and potentiate ER-stress-induced apoptosis.16, 17 ER stress has long been implicated as part of the secondary injury after central nervous system trauma,25, 26 but its mechanisms remain unknown.In the current study, we characterized the temporal distribution and cell-type specificity of autophagy following contusive SCI in a rat model. Our data demonstrate that autophagosome accumulation after SCI is not due to increased initiation of autophagy, but rather due to inhibition of autophagy flux. This likely reflects the disruption of lysosomal function after SCI. Pathological accumulation of autophagosomes is prominent in ventral horn (VH) motor neurons, where it is associated with signs of ER stress and related apoptosis. Together, our findings suggest that autophagy is disrupted after SCI and may exacerbate ER stress and neuronal cell death.  相似文献   

10.
J Shi  H Wang  H Guan  S Shi  Y Li  X Wu  N Li  C Yang  X Bai  W Cai  F Yang  X Wang  L Su  Z Zheng  D Hu 《Cell death & disease》2016,7(3):e2133
Hypertrophic scar (HS) is a serious skin fibrotic disease characterized by excessive hypercellularity and extracellular matrix (ECM) component deposition. Autophagy is a tightly regulated physiological process essential for cellular maintenance, differentiation, development, and homeostasis. Previous studies show that IL10 has potential therapeutic benefits in terms of preventing and reducing HS formation. However, no studies have examined IL10-mediated autophagy during the pathological process of HS formation. Here, we examined the effect of IL10 on starvation-induced autophagy and investigated the molecular mechanism underlying IL10-mediated inhibition of autophagy in HS-derived fibroblasts (HSFs) under starvation conditions. Immunostaining and PCR analysis revealed that a specific component of the IL10 receptor, IL10 alpha-chain (IL10Rα), is expressed in HSFs. Transmission electron microscopy and western blot analysis revealed that IL10 inhibited starvation-induced autophagy and induced the expression of p-AKT and p-STAT3 in HSFs in a dose-dependent manner. Blocking IL10R, p-AKT, p-mTOR, and p-STAT3 using specific inhibitors (IL10RB, LY294002, rapamycin, and cryptotanshinone, respectively) showed that IL10 inhibited autophagy via IL10Rα-mediated activation of STAT3 (the IL10R-STAT3 pathway) and by directly activating the AKT-mTOR pathway. Notably, these results suggest that IL10-mediated inhibition of autophagy is facilitated by the cross talk between STAT3, AKT, and mTOR; in other words, the IL10-IL10R-STAT3 and IL10-AKT-mTOR pathways. Finally, the results also indicate that mTOR-p70S6K is the molecule upon which these two pathways converge to induce IL10-mediated inhibition of autophagy in starved HSFs. In summary, the findings reported herein shed light on the molecular mechanism underlying IL10-mediated inhibition of autophagy and suggest that IL10 is a potential therapeutic agent for the treatment of HS.Autophagy is a degradative process in eukaryotic cells that removes or turns over bulk cytoplasmic constituents through the endosomal and lysosomal fusion system (i.e., autophagosomes).1, 2 Autophagy is induced by stressful conditions such as starvation and pathogenic invasion.2Hypertrophic scar (HS) is a major skin fibrotic disorder caused by hypercellularity and extracellular matrix (ECM) component deposition.3, 4, 5 HS formation is usually recognized as the consequence of disturbed tissue repair processes and/or disrupted homeostasis in the skin after traumatic injury: HS negatively impacts on patient appearance, skeletal muscle function, and quality of life in general.6, 7, 8, 9 About 40–70% of surgeries and over 91% of burn injuries result in HS.10 A key feature of HS is a metabolic disorder of collagen-based ECM proteins.11, 12, 13 Autophagy has an important role in homeostasis of tissue structure and function.2, 14, 15 Skin autophagic capability is associated with HS and with the pathogenesis of many human diseases.16, 17, 18, 19, 20, 21, 22, 23Existing studies suggest that cytokines are important regulators of the autophagic process in both immune and non-immune cells.24, 25, 26 Interleukin-10 (IL10), expressed by a variety of mammalian cell types, was first described as a cytokine-synthesis-inhibitory factor with immunosuppressive and anti-inflammatory functions.27, 28 IL10 has a pivotal role in wound healing29, 30 and is a promising therapeutic agent for scar improvement in both animal models and human cutaneous wounds.9, 31, 32Fibroblasts are one of the most important effector cells responsible for HS formation.12, 33, 34 Thus, we were prompted to elucidate the mechanisms underlying the interactions among IL10, autophagy, and HS formation, with the aim of providing a molecular foundation for the therapeutic efficacy IL10. We used HS tissue, HS-derived fibroblasts (HSFs), and starvation-induced autophagy in HSFs as our research platform.Here, we report that IL10 inhibited autophagy by interfering with IL10R-mediated activation of IL10R-STAT3, as well as by activating the AKT-mTOR pathway. In addition, cross talk among STAT3, AKT, and mTOR and between the IL10-IL10R-STAT3 and IL10-AKT-mTOR pathways collaboratively regulated starvation-induced autophagy in HSFs.  相似文献   

11.
Osteosarcoma is a common primary bone tumor in children and adolescents. The drug resistance of osteosarcoma leads to high lethality. Macrophage migration inhibitory factor (MIF) is an inflammation-related cytokine implicated in the chemoresistance of breast cancer. In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. The inhibition of MIF by DSTD promoted autophagy by inducing Bcl-2 downregulation and the translocation of HMGB1. N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced ROS-mediated autophagy to rescue cell death. However, in the presence of chemotherapy drugs, DSTD enhanced the chemosensitivity by decreasing the HMGB1 level. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma.Osteosarcoma, a common primary bone tumor in children and adolescents, is prone to early metastasis through blood.1 Treatment with a combination of surgery and aggressive adjuvant chemotherapy has improved the survival rate of osteosarcoma patients. The 5-year-survival rates of non-metastatic patients have reached a plateau of approximately 70%.2, 3 However, patients with poor responses to chemotherapeutics will undergo local recurrence and metastasis, which reduce the 5-year-survival rates to only 20% despite additional doses or drugs.4, 5 Drug resistance is responsible for the poor prognosis. Attenuating chemoresistance facilitates better treatment of osteosarcoma.6, 7 Novel treatment strategies that combine anticancer drugs with adjuvant agents could improve the antitumor effects.8, 9In the 1960s, macrophage migration inhibitory factor (MIF) was identified as a pluripotent protein that modulates inflammation.10 Increasing evidence suggests that inflammation is closely related to tumorigenesis.11 MIF plays a bridging role between inflammation and tumorigenesis.12, 13, 14 MIF triggers the activation of the MAPK and PI3K pathways by binding its membrane receptor CD74, resulting in the inhibition of cell apoptosis.15 Recently, MIF was demonstrated to be involved in cell proliferation, differentiation, angiogenesis and tumorigenesis.16, 17, 18 Some evidence has indicated that MIF is abundantly expressed in various cancers and is significantly associated with tumor invasion and metastasis.19, 20, 21 MIF has been well established to be involved in the development of glioblastoma,22 breast cancer,23 bladder cancer24 and colon cancer.20, 25 MIF was also upregulated in osteosarcoma.26, 27 The knockdown of MIF blocked osteosarcoma cell proliferation and invasion.26 However, the effect of MIF on drug resistance in osteosarcoma has not yet been investigated. Wu et al. 23 have revealed that MIF knockdown promoted chemosensitivity by inducing autophagy in breast cancer. In contrast, autophagy reportedly contributed to chemoresistance in osteosarcoma.6 These controversial results prompted us to confirm the role of MIF in drug resistance in osteosarcoma.In this study, we isolated a novel androstenedione derivative identified as 3,4-dihydroxy-9,10-secoandrosta-1,3,5,7-tetraene-9,17-dione (DSTD). DSTD could inhibit MIF expression in MG-63 and U2OS cells. Both N-acetyl-L-cysteine (NAC) and 3-methyladenine (3-MA) attenuated DSTD-induced autophagy but promoted cell death, suggesting that DSTD induced reactive oxygen species (ROS)-mediated autophagy to rescue cell death. Furthermore, MIF inhibition by DSTD enhances chemosensitivity by downregulating HMGB1 in osteosarcoma cells. Our data suggest MIF inhibition as a therapeutic strategy for overcoming drug resistance in osteosarcoma.  相似文献   

12.
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits diverse beneficial properties, including antiviral activity. Autophagy is a cellular process that is involved in the degradation of long-lived proteins and damaged organelles. Recent evidence indicates that modulation of autophagy is a potential therapeutic strategy for various viral diseases. In the present study, we investigated the effect of EGCG on hepatitis B virus (HBV) replication and the possible involvement of autophagy in this process. Our results showed that HBV induced autophagosome formation, which was required for replication of itself. However, although EGCG efficiently inhibited HBV replication, it enhanced, but not inhibited, autophagosome formation in hepatoma cells. Further study showed that HBV induced an incomplete autophagy, while EGCG, similar to starvation, was able to induce a complete autophagic process, which appeared to be unfavorable for HBV replication. Furthermore, it was found that HBV induced an incomplete autophagy by impairing lysosomal acidification, while it lost this ability in the presence of EGCG. Taken together, these data demonstrated that EGCG treatment opposed HBV-induced incomplete autophagy via enhancing lysosomal acidification, which was unfavorable for HBV replication.Macroautophagy (hereafter autophagy) is a conserved cellular process through which cytoplasmic materials are sequestered into double-membrane vacuole called autophagosomes and destined for degradation through fusion with lysosomes.1, 2, 3 Accumulating evidence indicates that autophagy is involved in diverse pathophysiological processes, including cancer, neurodegenerative disorders, and cardiovascular diseases.4, 5, 6, 7 Recent studies show that autophagy has an important role in regulating the replication of many viruses, including dengue virus, coxsackievirus B3 virus (CVB3), hepatitis C virus (HCV), and influenza virus A.8, 9, 10, 11, 12 Several investigations also indicate that autophagy has an important role in hepatitis B virus (HBV) replication: autophagy is induced by HBV and is required for HBV replication; however, the underlying mechanisms remains still unclear.13, 14, 15, 16Green tea is the most commonly consumed beverage worldwide. In traditional Chinese medicine, green tea is considered to have beneficial properties for human health, including antitumorigenic, antioxidant, and anti-inflammatory activities.17, 18, 19 Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and appears to be the primary active ingredient accounting for the latter''s biological effects. In recent years, EGCG is revealed to display inhibitory effect on diverse viruses, such as human immunodeficiency virus type-1, Epstein–Barr virus (EBV), and HCV.20, 21, 22, 23, 24, 25 Of interest, EGCG is also found to regulate autophagy formation, although it seems to be cell-type specific.26, 27, 28, 29, 30 Given the potential therapeutic effect of EGCG on viral infection and its role in autophagy regulation, we investigated the effect of EGCG on HBV replication and the possible involvement of autophagy in this process.Here we showed that HBV induced an incomplete autophagy that was required for HBV replication; however, a complete autophagic process induced by EGCG appeared to be unfavorable for HBV replication. Further study showed that HBV hampered the autophagic flux by impairing lysosomal acidification, which could be opposed by the treatment of EGCG.  相似文献   

13.
Paclitaxel is one of the most effective chemotherapy drugs for advanced cervical cancer. However, acquired resistance of paclitaxel represents a major barrier to successful anticancer treatment. In this study, paclitaxel-resistant HeLa sublines (HeLa-R cell lines) were established by continuous exposure and increased autophagy level was observed in HeLa-R cells. 3-Methyladenine or ATG7 siRNA, autophagy inhibitors, could restore sensitivity of HeLa-R cells to paclitaxel compared with parental HeLa cells. To determine the underlying molecular mechanism, differentially expressed proteins between HeLa and HeLa-R cells were identified by two-dimensional gel electrophoresis coupled with electrospray ionization quadrupole time-of-flight MS/MS. We found glycolysis-associated proteins were upregulated in HeLa-R cell lines. Inhibition of glycolysis by 2-deoxy-D-glucose or koningic acid could decrease autophagy and enhance sensitivity of HeLa-R cells to paclitaxel. Moreover, glycolysis could activate HIF1-α. Downregulation of HIF1-α by specific siRNA could decrease autophagy and resensitize HeLa-R cells to paclitaxel. Taken together, a possible Warburg effect activated HIF1-α-mediated signaling-induced autophagic pathway is proposed, which may provide new insight into paclitaxel chemoresistance.Cervical cancer, a common malignant tumor, is an vital cause of morbidity and mortality among women worldwide.1 Paclitaxel, the targets of which are the microtubules of cancer cells, is one of the most useful anticancer drugs against cervical cancer.2 Paclitaxel can destroy the dynamic equilibrium of tubulin between soluble dimers and polymerized form to make the microtubule structure stable. In addition, it is a strong inhibitor of chromosomal replication by obstructing tumor cells in the mitotic phases or late G2.3 However, acquired chemoresistance to paclitaxel obviously limits the successful treatment of cervical cancer. One main explanation on tumor cell resistance to paclitaxel is the overexpression of P-glycoprotein (P-gp, MDR-1), which works as a drug efflux pump. However, clinical utility of P-gp inhibitors are often ineffective or toxic at the doses required to attenuate P-gp function.4, 5, 6 Other possible mechanisms of action contain alterations in the drug-binding affinity of the microtubules,7 changes of tubulin structure and cell cycle deregulation.8, 9, 10, 11 Thus, paclitaxel-resistant mechanisms are complicated and still not entirely clear until now.As a self-proteolysis procedure in almost all eukaryotic cells, autophagy activated by adverse cellular environment contributes to the breakdown of intracellular components within lysosomes to supply an alternative source of energy and thus sustain cell survival.12, 13 However, it has been shown that cell death could be inhibited by suppressing expression of some vital autophagy-associated genes, underscoring the functional role of autophagy in the cell death.14, 15 Several important autophagy-associated proteins, such as Beclin 1 and PtdIns3K class I, have important roles in the control of both autophagy and apoptosis.16, 17, 18 Thus, the function of autophagy has been described as a double-edged sword that can work both as a protector and killer of cells, which depends on the developmental stage of the disease or the surrounding microenvironment.19It has been reported that anticancer treatment (such as radiotherapy, chemotherapy and molecular targeted therapy) could induce autophagy in cancer cells. In addition, impaired autophagy could make cancer cells sensitize to these therapies, indicating a hopeful strategy to better the efficacy of cancer treatment.11, 20, 21, 22 However, few studies on the underlying molecular mechanism of chemoresistance-associated autophagy were carried out.In this study, increased levels of autophagy were observed in paclitaxel-resistant HeLa sublines (HeLa-R cell lines). 3-Methyladenine (3-MA) or ATG7 siRNA, autophagy inhibitors, restored sensitivity of HeLa-R cells to paclitaxel. In addition, a group of metabolic proteins with significant alteration were identified by proteomics, which may suggest the switch of cellular metabolism from tricarboxylic acid cycle to glycolysis. Moreover, inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) or koningic acid (KA) could inhibit autophagy and enhance sensitivity of HeLa-R cells to paclitaxel. In addition, HIF1-α could be activated by glycolysis and HIF1-α siRNA could decrease autophagy and resensitize HeLa-R cells to paclitaxel. In conclusion, a possible Warburg effect activated HIF1-α-mediated signaling-induced autophagic pathway is proposed, which may provide new insight into paclitaxel chemoresistance.  相似文献   

14.
Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow, but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action. Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression. Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel mechanism by which laminar flow produces its vascular-protective actions.Vascular endothelial cells (ECs) are fundamentally important in maintaining structural and functional homeostasis of blood vessels. Normal biological functions of ECs are highly sensitive to the biomechanical stimuli induced by blood flow, of which shear stress acting on the surface of EC has been recognized to be one of the most important vasoactive factors in EC.1, 2 A relatively high level of laminar shear stress is cytoprotective, whereas abnormal (low-magnitude or oscillatory) shear stress is a detrimental cellular stress to ECs.1 Transduction of the mechanical signals involves multiple messenger molecules and signaling proteins, which collectively regulate important endothelial functions, such as gene expression, proliferation, migration, morphogenesis, permeability, thrombogenicity, and inflammation.2Autophagy (also known as macroautophagy) is an evolutionarily conserved cellular stress response.3, 4 Autophagy is a cellular self-digestion process, which is responsible for degradation of misfolded proteins and damaged organelles. Autophagic process is mainly mediated by the formation of autophagosome, a double-membrane vacuole structure containing engulfed cellular components. This process requires expression of a group of key genes involved in autophagy, including LC3A, beclin-1, Atg5, Atg7, and Atg12, for example.3, 5 Autophagosomes fuse with lysosomes, forming autolysosomes, where the cellular components are degraded by various hydrolases in an acidified environment.4, 5 In ECs, an autophagic response can be initiated by different stress stimuli.6, 7, 8 It is noted that the cellular outcome following autophagy induction in ECs varies depending on the nature of stimuli and specific experimental settings.6, 7, 9, 10 Moreover, there is evidence showing that autophagy may also be involved in modulating other EC functions such as angiogenesis and cellular senescence.11, 12 Therefore, understanding the regulatory mechanisms of autophagy in ECs will be important for discovery of strategies to protect normal endothelial functions. Recently, Guo et al. provided some evidence indicating that the autophagic process in EC might be affected by shear stress.13 This argument, however, was only based on observations of changed expression levels of LC3 and beclin-1; further experimental evidence is needed to confirm such an effect of shear stress on autophagy. More importantly, the mechanisms underlying this phenomenon are not understood. Different signaling pathways may be involved in modulating autophagy in ECs.14, 15, 16 For example, inhibition of the mTOR (mammalian target of rapamycin) pathway by rapamycin-induced endothelial autophagy and prevented energy stress-triggered cell damage.16 There is also evidence indicating a potential role of Sirt1.14 Moreover, accumulating evidence has suggested that reactive oxygen species (ROS) are closely implicated in modulating autophagic responses via complex interactions with other autophagy-related factors.15 Despite of these results, the signaling mechanisms of shear stress-regulated autophagy in EC remain to be defined. Hence, here we aim to delineate the impacts and underlying mechanisms of shear stress on autophagy in human vascular ECs.  相似文献   

15.
16.
Ovarian cancer has a high mortality rate because there are few symptoms in early disease development. The incidence of ovarian cancer increases in women after menopause. Understanding early events in this disease can best be achieved by using animal models. Therefore, the objective of this study was to develop and track the onset of ovarian tumorigenesis in mice mimicking characteristics of postmenopausal epithelial cancer in women. Female B6C3F1 mice (age, 28 d) received 4-vinylcyclohexene diepoxide (VCD, 160 mg/kg IV daily for 20 d) to cause ovarian failure. Four months after VCD treatment, via surgical intervention, each mouse received a single injection of 7,12-dimethylbenz[a]anthracene (DMBA) or vehicle control (sesame oil) under the bursa of the right ovary to cause ovarian neoplasms. The experimental groups were untreated controls (Con–Con), DMBA-treatment only (Con–DMBA), VCD treatment only (VCD–Con), and VCD+DMBA-treated (VCD+DMBA) mice. At 3, 5, 7, and 9 mo after DMBA injection, ovaries were collected for histologic and immunohistochemical evaluation. No tumors developed in Con–Con mice. All VCD-treated mice (with or without DMBA) exhibited ovarian failure. Mice that received both VCD and DMBA exhibited tumors at 3 mo (50%), 5 mo (14%), 7 mo (90%), and 9 mo (57%) after DMBA treatment; 31% of the tumors were epithelial in origin. Our findings confirm that inducing ovarian tumors in mice by chemical means is an effective method for studying early stages of tumor development that may be relevant to epithelial ovarian cancers that arise in postmenopausal women.Abbreviations: DMBA, 7,12-dimethylbenz[a]anthracene; VCD, 4-vinylcyclohexene diepoxideOvarian cancer, the most deadly female reproductive malignancy, has a high mortality rate because high-grade cancers are thought to metastasize early prior to the development of symptoms in early stages of disease.4,27,28 The risk of contracting ovarian cancer over a lifetime is about 1 in 70, so it is a relatively rare cancer.28 Although more than 20 types of ovarian malignancies exist, about 90% of human ovarian cancers are epithelial in origin.28 Most cases are diagnosed at stages when the disease has metastasized outside the ovary, hindering efforts to treat or cure the disease. In addition, few reliable detection methods exist for early diagnosis of this disease. The incidence of ovarian cancer increases 8- to 10-fold among women in the peri- to postmenopausal period when compared with younger women.28 The generation of animal models of ovarian cancer has been attempted for decades. These models have included whole-body irradiation,5-7 chemical induction,13,15,17,21 genetic manipulation,18,25 and xenograph development.9,23 It was observed as early as 1936 that the removal of all follicles from a mouse ovary was followed by the appearance of benign tubular adenomas in the residual ovarian tissue.6,7,21,27 These adenomas appear to originate at the surface epithelium and proceed to invaginate and spread throughout the ovary.As women transition from peri- to postmenopause, circulating levels of estrogen and progesterone decrease, and the relative ratio of estrogens to androgens decreases in response to the decline of estrogen. In addition, gonadotropin (follicle stimulating hormone, luteinizing hormone) levels rise due to loss of negative feedback on the anterior pituitary and, thereafter, remain elevated.26 One theory of ovarian carcinogenesis proposes that increased circulating gonadotropin levels after menopause contribute to the development of ovarian epithelial cancers by stimulating surface epithelium proliferation.18 Women who have undergone a natural progression to menopause have lost ovarian function but retain residual ovarian tissue. Therefore, because ovarian cancers in women arise more frequently after than before menopause, models developed in animals that have undergone ovarian failure and retain residual ovarian tissue likely most closely resemble the disease in postmenopausal women.Repeated daily dosing of mice with the ovotoxic chemical 4-vinylcyclohexene diepoxide (VCD) results in a gradual onset of ovarian failure.24 Because VCD selectively targets primordial and primary follicles,22 larger follicles remain and develop toward ovulation.8 With the depletion of primordial and primary follicles, recruitment into the larger follicle pool eventually ceases, and a gradual onset of ovarian failure results. In VCD-treated mice, estrogen and progesterone concentrations decline and follicle-stimulating hormone levels rise after follicle depletion, similar to the scenario in postmenopausal women.19 A recent mouse model that combined virally induced changes in genes within the ovary and treatment with VCD resulted in ovarian failure along with induction of tumors characterized as undifferentiated tumors with mixed epithelial and stromal components along with some features of sex cord stromal tumors.18In a previous study, female Fisher 344 rats with VCD-induced ovarian failure developed ovarian tumors after treatment with 7, 12-dimethylbenz[a]anthracene (DMBA).11 Specifically, 57% of the VCD+DMBA-treated rats developed ovarian tumors within 5 months after DMBA treatment. However, the tumors were all classified as Sertoli–Leydig cell type lesions, which are rare ovarian neoplasms in women and often much less aggressive than are their epithelial counterpart.27,28 In another study,3 female B6C3F1 mice were treated in the same way as in the Fisher 344 rat study.9 Similarly, all tumors that developed within 5 mo in treated mice (28%) were also Sertoli–Leydig cell type masses. Therefore, the present study was undertaken in B6C3F1 mice to observe and classify DMBA-induced ovarian tumor development at later time points (7 and 9 mo after DMBA exposure) to determine whether epithelial tumors would develop and, if so, when.  相似文献   

17.
All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.Macroautophagy (hereafter referred to as autophagy) is a conserved mechanism characterized by the formation of double-membrane structures. These so-called autophagosomes deliver cytoplasmic material to the lysosome for subsequent degradation.1 Basal autophagy requires tight regulation as alterations in autophagy have been associated with many pathological conditions, including cancer.2 In addition, autophagy has been linked to fundamental processes such as development and cellular differentiation. In these processes, autophagy contributes to cell remodeling as observed during erythrocyte, lymphocyte or adipocyte differentiation.3 In the context of cancer and cancer therapy, autophagy is a double-edged sword. Owing to its homeostatic role in the removal of potentially harmful damaged organelles and protein aggregates, it is suggested to be tumor suppressive under normal conditions.4 In cancer cells, however, autophagy can be oncogenic, enabling survival under stressful conditions.5 Hence, the role of autophagy in tumorigenesis is clearly dependent on the cellular context and the tumor stage. In some cases, therapeutic agents induce an autophagic response that can promote resistance to treatment. In other cases, autophagy contributes to the action of antitumor agents.6 Therefore, knowledge about the action exerted by autophagy in response to anticancer treatments is a prerequisite for the identification of patients benefiting from therapeutic strategies based on autophagy modulators.All-trans retinoic acid (ATRA), the active metabolite of vitamin A, exerts diverse functions in almost every cell and organ system. ATRA controls cell proliferation, differentiation as well as immune, and neuronal functions primarily via regulation of gene expression.7 Endogenous retinoid levels are altered in different diseases of the lung, kidney and central nervous system, and contribute to their pathophysiology.8 ATRA is successfully used in the treatment of acute promyelocytic leukemia (APL), where it induces granulocytic differentiation of the blast and subsequent cell death of the differentiated leukemic cells. Importantly, ATRA-induced differentiation of the APL cell line, NB4, involves induction of macroautophagy.9, 10, 11, 12 In addition to its cytodifferentiating capacity in APL, ATRA has been proposed as an antitumorigenic agent for other types of cancer. The antiproliferative, cytodifferentiating and proapoptotic effects of retinoids are predominantly mediated by the nuclear hormone retinoid acid receptors RARα, RARβ and RARγ.13, 14 In breast cancer, preclinical studies have shown that retinoids are promising therapeutic agents. However, the clinical trials conducted so far were somewhat disappointing, possibly as a consequence of the study designs.15 Breast cancer is a highly heterogeneous disease represented as a collection of diseases with distinct histopathological and molecular features. The most important clinical classification of this tumor is based on the determination of ER (estrogen receptor), PR (progesterone receptor) and HER2 (human epidermal growth factor receptor-2) receptors. ER-positive breast cancer patients are eligible for hormonal therapies, whereas HER2 oncogenic activity can be blocked using targeted therapies.16 Approximately 15–20% of breast carcinomas overexpress HER2, which is associated with poor prognosis.17 Owing to the development of resistance to current HER2-targeted treatments such as trastuzumab and lapatinib alternative therapeutic strategies are required.18, 19 ATRA was recently shown to exert strong antitumor activity in cell lines representing a subgroup of HER2-positive breast tumors characterized by coamplification of the ERBB2 and RARα genes.20 This antitumor activity is remarkably stimulated by simultaneous HER2 inhibition with lapatinib. In addition, autophagy is induced upon ATRA treatment of the APL-derived cell line NB49, 10, 11 and retinoids have clinical relevance in breast cancer. Thus, we investigated whether and how autophagy is induced in breast cancer cells. In addition, we evaluated whether autophagy modulation represents a potential therapeutic strategy for potentiating ATRA cytotoxicity in breast cancer cells.  相似文献   

18.
Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.Artemisinin, a sesquiterpene lactone isolated from the Chinese herb Artemisia annua L., has profound activity against malaria.1 Artemisinin contains an endoperoxide moiety that reacts with iron to produce toxic reactive oxygen species (ROS). When malaria parasite (Plasmodia) consumes iron-rich haemoglobin within its acidic food vacuole in erythrocytes, the exposure of artemisinin to haem-derived iron results in lethal ROS production that exerts fatal toxicity to the parasite.2 Therefore, artemisinin, its water-soluble derivative artesunate (ART) and other analogues are potent in killing malarial parasites.1,3Cancer cells contain substantial free iron, resulting from their higher-rate iron uptake via transferrin receptors compared with normal cells. Therefore, artemisinin-based drugs such as ART possess selective toxicity to cancer cells.4, 5, 6 Importantly, the pharmacokinetics and tolerance of ART as an anti-malarial drug have been well documented, with clinical studies showing excellent safety. Collectively, these properties make artemisinin-based compounds attractive drug candidates for cancer chemotherapy. Artemisinin and ART have been shown to induce cell death in multiple cancer cells, including colon, breast, ovarian, prostate,7 pancreatic8 and leukaemia9 cancer cells. Preliminary in vivo experiments also indicate the therapeutic potential for these drugs as anti-cancer treatments. In animal models, artemisinin or ART has shown promising results in Kaposi Sarcoma,10 pancreatic cancer11 and hepatoma,12 while compassionate use of ART in uveal melanoma patients fortifies standard chemotherapy potential for the patients.13 Currently, ART is on clinical trial for breast cancer treatment (ClinicalTrials.gov ID: NCT00764036).Programmed cell death (PCD) is one of the critical terminal paths for the cells of metazoans. Among PCD, apoptosis has been well studied and it is known that caspase activation is essential in this process.14 In addition to apoptosis, necroptosis is another form of PCD. The RIP1-RIP3 complex highlights the signals that regulate necroptosis.15, 16, 17 Artemisinin derivatives, mostly ART, have been suggested to lead to apoptosis via ROS production in cancer cells. Efforts have been focused on ROS-mediated mitochondrial apoptosis,9,18,19 and DNA damage20 in cancer cells. Recent data suggest that artemisinin and its derivatives may induce cell death or inhibit proliferation through diverse mechanisms in different cell types. Artemisinin or its analogues were shown to inhibit cell proliferation in multiple cancer cells by regulating cell-cycle arrest21, 22, 23 or inducing apoptosis.24,25 Nevertheless, the detailed molecular mechanisms underlying artemisinin or ART-induced cell death are poorly understood, thus need to be further addressed.Neurofibromatosis 2 (NF2) is caused by the loss of NF2 gene encoding Merlin protein. NF2 gene mutations cause the low grade tumour syndrome, composed of schwannomas, meningiomas and ependymomas.26 All spontaneous schwannomas, the majority of meningiomas and a third of ependymomas are caused by NF2 gene mutations. Notably, approximately 10% of intracranial tumours are schwannomas.27 Interestingly, NF2 gene mutations are also found in a variety of cancers, including breast cancer and mesothelioma.28, 29, 30 The low grade tumours caused by NF2 gene mutations do not respond well to current cancer drugs and therapy is restricted to surgery and radiosurgery.26 Therefore, there is a need for drug treatment of the diseases. Here, we show that ART sufficiently induced schwannoma cell death in both RT4 cell line and human primary cells. Importantly, we show, for the first time, that ART-induced cell death is largely dependent on necroptosis. Our data suggest that ART has great potential in schwannoma chemotherapy, especially when used in synergy with an apoptosis-inducing drug and/or an autophagy-inhibitory drug.  相似文献   

19.
Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways.Head and neck squamous cell carcinoma (HNSCC), which occurs in the oral cavity, oropharynx, larynx and hypopharynx, is the sixth most common malignancy worldwide.1 It affects 600 000 new patients each year, which accounts for over 90% of head and neck cancers.2, 3 The current preferred therapy for HNSCC is combined surgery, radiotherapy, chemotherapy and biotherapy; however, the 5-year survival rate is still <50%, and the long-term survival rate has only marginally improved.4, 5, 6 As an important hallmark of head and neck cancer, apoptosis resistance restricts the efficacy of traditional therapies.7 Survivin (also called BIRC5) inhibits apoptosis-related proteins, regulates cell division, relates to stress response and promotes tumor-associated angiogenesis in HNSCC.8 Survivin is also associated with high-grade and advanced HNSCC, poor survival, high recurrence rate and chemotherapy and radiation resistance. Therefore, targeting survivin is promisingly beneficial for head and neck cancer therapies.Sepantronium bromide (YM155) is a small imidazolium-based compound (1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide) that selectively suppresses survivin expression9 and displays potent anticancer activities against various types of cancer.10, 11, 12 Previous researches have focused on that YM155 induced the apoptosis by downregulating survivin in cancer cells.10, 13, 14 Recent studies including ours have demonstrated YM155 also triggered autophagy in cancer cells.15, 16, 17 Macroautophagy or autophagy is considered to be another type of programmed cell death wherein proteins are degraded by autophagosomes and lysosomes.18 Autophagy also has an important role in tumorigenesis.19 Autophagy shares several regulatory systems and common pathways with apoptosis; thus, autophagy is closely linked with apoptosis. Beclin1 (ATG6), an autophagy-specific gene that is essential for autophagosome induction and elongation, interacts with several apoptosis-related genes, such as bcl-2, bcl-xl and survivin.20 Therefore, YM155 may not only induce the apoptosis but also affect the autophagy in HNSCC.The present study investigated the antitumor effects of YM155 on HNSCC in vitro and in vivo through dual induction of apoptotic and autophagic cell death. Although it specifically suppressed the expression of survivin, we here proved YM155 also targeted the mTOR signaling pathway, which was the principal regulator of cancer cell survival and autophagy. Most importantly, in an inducible tissue-specific spontaneous HNSCC mouse model with 100% penetrance by the combined deletion of Tgfbr1 and Pten (Tgfbr1/Pten 2cKO) in the oral mucosa21 with ubiquitous activation of the Akt/mTOR/survivin pathway,22 YM155 exerted significant therapeutic effects by delaying tumor onset and suppressing tumor growth. This finding coincided with the xenograft results. Finally, the effects of YM155 when combined with traditional chemotherapeutic agent were also determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号