首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Selection pressure from parasites is thought to be a major force shaping the extreme polymorphism of the major histocompatibility complex (MHC) genes, but the modes and consequences of selection remain unclear. Here, we analyse MHC class II and microsatellite diversity in 16 guppy (Poecilia reticulata) populations from two islands (Trinidad and Tobago) that have been separated for at least 10 ky. Within-population MHC diversity was high, but allele sharing was limited within islands and even lower between islands, suggesting relatively fast turnover of alleles. Allelic lineages strongly supported in phylogenetic analyses tended to be island-specific, suggesting rapid lineage sorting, and an expansion of an allelic lineage private to Tobago was observed. New alleles appear to be generated locally at a detectably high frequency. We did not detect a consistent signature of local adaptation, but FST outlier analysis suggested that balancing selection may be the more general process behind spatial variation in MHC allele frequencies in this system, particularly within Trinidad. We found no evidence for divergent allele advantage within populations, or for decreased genetic structuring of MHC supertypes compared to MHC alleles. The dynamic and complex nature of MHC evolution we observed in guppies, coupled with some evidence for balancing selection shaping MHC allele frequencies, are consistent with Red Queen processes of host-parasite coevolution.Subject terms: Population genetics, Evolutionary genetics  相似文献   

2.
The co-evolutionary arms race between host immune genes and parasite virulence genes is known as Red Queen dynamics. Temporal fluctuations in allele frequencies, or the 'turnover' of alleles at immune genes, are concordant with predictions of the Red Queen hypothesis. Such observations are often taken as evidence of host-parasite co-evolution. Here, we use computer simulations of the Major Histocompatibility Complex (MHC) of guppies (Poecilia reticulata) to study the turnover rate of alleles (temporal genetic differentiation, G'(ST)). Temporal fluctuations in MHC allele frequencies can be ≥≤order of magnitude larger than changes observed at neutral loci. Although such large fluctuations in the MHC are consistent with Red Queen dynamics, simulations show that other demographic and population genetic processes can account for this observation, these include: (1) overdominant selection, (2) fluctuating population size within a metapopulation, and (3) the number of novel MHC alleles introduced by immigrants when there are multiple duplicated genes. Synergy between these forces combined with migration rate and the effective population size can drive the rapid turnover in MHC alleles. We posit that rapid allelic turnover is an inherent property of highly polymorphic multigene families and that it cannot be taken as evidence of Red Queen dynamics. Furthermore, combining temporal samples in spatial F(ST) outlier analysis may obscure the signal of selection.  相似文献   

3.
The major histocompatibility complex (MHC), coding for antigen presenting molecules of the adaptive immune system, represents one of the most polymorphic regions in the vertebrate genome. The exceptional polymorphism, which is potentially maintained by balancing selection under host-parasite coevolution, comprises excessive sequence divergence among alleles as well as ancient allelic lineages that predate species divergence (trans-species polymorphism). Here, the mechanisms that are proposed to maintain such sequence divergence and ancient lineages are investigated. Established computational antigen-binding prediction algorithms, which are based on empirical databases, are employed to determine the overlap in bound antigens among individual MHC class IIB alleles. The results show that genetically more divergent allele pairs experience less overlap and thus present a broader range of potential antigens. These findings support the divergent allele advantage hypothesis and furthermore suggest an evolutionary advantage explaining the maintenance of divergent allelic lineages, that is, trans-species polymorphism. In addressing a quantitative rather than qualitative aspect of MHC alleles, these insights highlight a new direction for future research on MHC evolution.  相似文献   

4.
Pathogen‐mediated selection is thought to maintain the extreme diversity in the major histocompatibility complex (MHC) genes, operating through the heterozygote advantage, rare‐allele advantage and fluctuating selection mechanisms. Heterozygote advantage (i.e. recognizing and binding a wider range of antigens than homozygotes) is expected to be more detectable when multiple pathogens are considered simultaneously. Here, we test whether MHC diversity in a wild population of European badgers (Meles meles) is driven by pathogen‐mediated selection. We examined individual prevalence (infected or not), infection intensity and co‐infection of 13 pathogens from a range of taxa and examined their relationships with MHC class I and class II variability. This population has a variable, but relatively low, number of MHC alleles and is infected by a variety of naturally occurring pathogens, making it very suitable for the investigation of MHC–pathogen relationships. We found associations between pathogen infections and specific MHC haplotypes and alleles. Co‐infection status was not correlated with MHC heterozygosity, but there was evidence of heterozygote advantage against individual pathogen infections. This suggests that rare‐allele advantages and/or fluctuating selection, and heterozygote advantage are probably the selective forces shaping MHC diversity in this species. We show stronger evidence for MHC associations with infection intensity than for prevalence and conclude that examining both pathogen prevalence and infection intensity is important. Moreover, examination of a large number and diversity of pathogens, and both MHC class I and II genes (which have different functions), provide an improved understanding of the mechanisms driving MHC diversity.  相似文献   

5.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamics incorporating both survival and reproduction, we demonstrate that natural and sexual selection produce distinctive signatures of MHC allelic diversity with critical implications for understanding host–pathogen dynamics. While natural selection produces the Red Queen dynamics characteristic of host–parasite interactions, disassortative mating stabilizes allele frequencies, damping major fluctuations in dominant alleles and protecting functional variants against drift. This subtle difference generates a complex interaction between MHC allelic diversity and population size. In small populations, the stabilizing effects of sexual selection moderate the effects of drift, whereas pathogen-mediated selection accelerates the loss of functionally important genetic diversity. Natural selection enhances MHC allelic variation in larger populations, with the highest levels of diversity generated by the combined action of pathogen-mediated selection and disassortative mating. MHC-based sexual selection may help to explain how functionally important genetic variation can be maintained in populations of conservation concern.  相似文献   

6.
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen‐mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC‐DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human‐mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.  相似文献   

7.
Pathogen resistance and genetic variation at MHC loci   总被引:14,自引:0,他引:14  
Abstract.— Balancing selection in the form of heterozygote advantage, frequency-dependent selection, or selection that varies in time and/or space, has been proposed to explain the high variation at major histocompatibility complex (MHC) genes. Here the effect of variation of the presence and absence of pathogens over time on genetic variation at multiallelic loci is examined. In the basic model, resistance to each pathogen is conferred by a given allele, and this allele is assumed to be dominant. Given that s is the selective disadvantage for homozygotes (and heterozygotes) without the resistance allele and the proportion of generations, which a pathogen is present, is e , fitnesses for homozygotes become (1 — s )(n-1)e and the fitnesses for heterozygotes become (1 — s )(n-2)e, where n is the number of alleles. In this situation, the conditions for a stable, multiallelic polymorphism are met even though there is no intrinsic heterozygote advantage. The distribution of allele frequencies and consequently heterozygosity are a function of the autocorrelation of the presence of the pathogen in subsequent generations. When there is a positive autocorrelation over generations, the observed heterozygosity is reduced. In addition, the effects of lower levels of selection and dominance and the influence of genetic drift were examined. These effects were compared to the observed heterozygosity for two MHC genes in several South American Indian samples. Overall, resistance conferred by specific alleles to temporally variable pathogens may contribute to the observed polymorphism at MHC genes and other similar host defense loci.  相似文献   

8.
Major histocompatibility (MHC) molecules are encoded by extremely polymorphic genes and play a crucial role in vertebrate immunity. Natural selection favors MHC heterozygous hosts because individuals heterozygous at the MHC can present a larger diversity of peptides from infectious pathogens than homozygous individuals. Whether or not heterozygote advantage is sufficient to account for a high degree of polymorphism is controversial, however. Using mathematical models we studied the degree of MHC polymorphism arising when heterozygote advantage is the only selection pressure. We argue that existing models are misleading in that the fitness of heterozygotes is not related to the MHC alleles they harbor. To correct for this, we have developed novel models in which the genotypic fitness of a host directly reflects the fitness contributions of its MHC alleles. The mathematical analysis suggests that a high degree of polymorphism can only be accounted for if the different MHC alleles confer unrealistically similar fitnesses. This conclusion was confirmed by stochastic simulations, including mutation, genetic drift, and a finite population size. Heterozygote advantage on its own is insufficient to explain the high population diversity of the MHC.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

9.
Babik W  Durka W  Radwan J 《Molecular ecology》2005,14(14):4249-4257
Major histocompatibility complex (MHC) genes, coding molecules which play an important role in immune response, are the most polymorphic genes known in vertebrates. However, MHC polymorphism in some species is limited. MHC monomorphism at several MHC class I and II loci was previously reported for two neighbouring northern European populations of the Eurasian beaver (Castor fiber) and reduced selection for polymorphism has been hypothesized. Here, we analysed a partial sequence of the second exon of the MHC II DRB locus from seven relict European and Asian beaver populations. We detected 10 unique alleles among 76 beavers analysed. Only a western Siberian population was polymorphic, with four alleles detected in 10 individuals. Each of the remaining populations was fixed for a different allele. Sequences showed considerable divergence, suggesting the long persistence of allelic lineages. A significant excess of nonsynonymous substitutions was detected at the antigen binding sites, indicating that sequence evolution of beaver DRB was driven by positive selection. Current MHC monomorphism in the majority of populations may be the result of the superimposition of the recent bottleneck on pre-existing genetic structure resulting from population subdivision and differential pathogen pressure.  相似文献   

10.
The major histocompatibility complex (MHC) presents a group of genes with highly polymorphic loci involved in specific immune responses. The factors maintaining extensive MHC polymorphism have been questioned, considering three possible hypotheses of parasite‐mediated selection driving an extensive MHC diversity (i.e. heterozygote advantage, rare‐allele advantage, and favouring optimal MHC diversity). The patterns of MHC diversity of class IIB genes were investigated following two noncontradicting hypotheses, parasite‐driven selection and MHC‐based mating preferences, using males of common bream collected in the spawning period. Two allelic groups DAB1 and DAB3 were recognized from the phylogenetic analyses. Individuals expressed one or two alleles of the same or different allelic groups. Several individuals shared identical alleles; however, the presence of parasite species was not associated with the occurrence of a particular allele. The presence of different allelic groups (only DAB1, only DAB3, or both DAB1 and DAB3) in individuals was not associated with parasite presence or diversity. The expression of two DAB1 alleles was associated with higher endoparasite abundance. Moreover, nucleotide diversity in individuals expressing a single type of alleles (DAB1 or DAB3) increased with the abundance of ectoparasitic Dactylogyrus spp. (Monogenea) and Ergasilus sp. (Crustacea). This suggests that the expression of two alleles of a single allelic type is related to high metazoan parasite infection whereas no significant influence of parasitism on the combined allelic form (the presence of both DAB1 and DAB3 alleles) was found. Moreover, the expression of two alleles of a single allelic type was related to decreased immunocompetence measured by spleen size. The condition factor was higher in fish expressing the combined allelic type. Thus, the presence of alleles of different lineages in individuals appears to be advantageous for individual male fitness. The expression of a single allelic type was related to higher sexual ornamentation, which could support the role of MHC in the hypothesis of the sexual selection of ‘good genes’. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 525–538.  相似文献   

11.

Background  

The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately.  相似文献   

12.
N. Takahata  M. Nei 《Genetics》1990,124(4):967-978
To explain the long-term persistence of polymorphic alleles (trans-specific polymorphism) at the major histocompatibility complex (MHC) loci in rodents and primates, a computer simulation study was conducted about the coalescence time of different alleles sampled under various forms of selection. At the same time, average heterozygosity, the number of alleles in a sample, and the rate of codon substitution were examined to explain the mechanism of maintenance of polymorphism at the MHC loci. The results obtained are as follows. (1) The coalescence time for neutral alleles is too short to explain the trans-specific polymorphism at the MHC loci. (2) Under overdominant selection, the coalescence time can be tens of millions of years, depending on the parameter values used. The average heterozygosity and the number of alleles observed are also high enough to explain MHC polymorphism. (3) The pathogen adaptation model proposed by Snell is incapable of explaining MHC polymorphism, since the coalescence time for this model is too short and the expected heterozygosity and the expected number of alleles are too small. (4) From the mathematical point of view, the minority advantage model of frequency-dependent selection is capable of explaining a high degree of polymorphism and trans-specific polymorphism. (5) The molecular mimicry hypothesis also gives a sufficiently long coalescence time when the mutation rate is low in the host but very high in the parasite. However, the expected heterozygosity and the expected number of alleles tend to be too small. (6) Consideration of the molecular mechanism of the function of MHC molecules and other biological observations suggest that the most important factor for the maintenance of MHC polymorphism is overdominant selection. However, some experiments are necessary to distinguish between the overdominance and frequency-dependent selection hypotheses.  相似文献   

13.
In vertebrates, the genes of the major histocompatibility complex (MHC) are among the most debated candidates accounting for co-evolutionary processes of host-parasite interaction at the molecular level. The exceptionally high allelic polymorphism found in MHC loci is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or rare allele advantage (= frequency dependent selection). While investigations under natural conditions are still very rare, studies on humans or mice under laboratory conditions revealed support for both hypotheses. We investigated nematode burden and allelic diversity of a functional important MHC class II gene (DRB exon2) in free-ranging yellow-necked mice (Apodemus flavicollis). Twenty-seven distinct Apfl-DRB alleles were detected in 146 individuals with high levels of amino acid sequence divergence, especially at the antigen binding sites (ABS), indicating selection processes acting on this locus. Heterozygosity had no influence on the infection status (being infected or not), the number of different nematode infections (NNI) or the intensity of infection, measured as the individual faecal egg count (FEC). However, significant associations of specific Apfl-DRB alleles to both nematode susceptibility and resistance were found, for all nematodes as well as in separate analyses of the two most common nematodes. Apodemus flavicollis individuals carrying the alleles Apfl-DRB*5 or Apfl-DRB*15 revealed significantly higher FEC than individuals with other alleles. In contrast, the allele Apfl-DRB*23 showed a significant association to low FEC of the most common nematode. Thus, our results provide evidence for pathogen-driven selection acting through rare allele advantage under natural conditions.  相似文献   

14.
MHC polymorphism under host-pathogen coevolution   总被引:9,自引:0,他引:9  
The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

15.
16.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.  相似文献   

17.
A major goal of evolutionary biology is to understand how selection drives local adaptation. For example, the major histocompatibility complex (MHC) plays an important role in the immune system, and high levels of MHC variation are thought to be a form of adaptation in natural populations. Individual MHC composition may influence parasite resistance via advantages associated with 1) heterozygosity, because heterozygotes recognize a broader range of different antigens than homozygotes (heterozygote advantage); 2) highly variable amino acid sequences in MHC alleles, allowing individuals to bind a broader spectrum of parasite-derived peptides (divergent-alleles advantage, a mechanistic variant of the heterozygote advantage model); or 3) specific MHC alleles (rare allele advantage or frequency dependent selection). We investigated relationships between gastrointestinal nematode burden and both adaptive immune gene variability (MHC class II DRB) and neutral microsatellites in free-living gray mouse lemurs (Microcebus murinus) native to a dry deciduous forest population in western Madagascar to test these hypotheses. The individual MHC composition was related to parasite infestation. Specific MHC alleles were involved in parasite resistance and the presence of common alleles negatively influenced infestation intensity. We found no support for the heterozygote advantage hypothesis, but we did find support for the divergent-MHC allele advantage hypothesis: Individuals with very divergent MHC alleles carried fewer and less intense nematode infestations than individuals with more similar alleles in the more variable dry deciduous forest population. These results indicate that intestinal parasites are important selection pressures under natural conditions and suggest that different selection mechanisms are not mutually exclusive. In contrast, we detected no association between neutral overall individual genetic diversity (measured via 17 microsatellites) and parasite load. Finally, we investigated the ubiquity of parasite-driven selection mechanisms by comparing our results with a previous study of a mouse lemur population from the climatically different littoral forest in southeastern Madagascar, ca. 500 km away. This revealed that different specific MHC alleles were involved in parasite resistance in the 2 habitats, showing that gene-parasite associations are not consistent between populations.  相似文献   

18.
Stoffels RJ  Spencer HG 《Genetics》2008,178(3):1473-1489
We characterize the function of MHC molecules by the sets of pathogens that they recognize, which we call their "recognition sets." Two features of the MHC-pathogen interaction may be important to the theory of polymorphism construction at MHC loci: First, there may be a large degree of overlap, or degeneracy, among the recognition sets of MHC molecules. Second, when infected with a pathogen, an MHC genotype may have a higher fitness if that pathogen belongs to the overlapping portion, or intersection, of the two recognition sets of the host, when compared with a genotype that contains that pathogen in only one of its recognition sets. We call this benefit "intersection advantage," gamma, and incorporate it, as well as the degree of recognition degeneracy, m, into a model of heterozygote advantage that utilizes a set-theoretic definition of fitness. Counterintuitively, we show that levels of polymorphism are positively related to m and that a high level of recognition degeneracy is necessary for polymorphism at MHC loci under heterozygote advantage. Increasing gamma reduces levels of polymorphism considerably. Hence, if intersection advantage is significant for MHC genotypes, then heterozygote advantage may not explain the very high levels of polymorphism observed at MHC genes.  相似文献   

19.
In vertebrate animals, genes of the major histocompatibility complex (MHC) determine the set of pathogens to which an individual's adaptive immune system can respond. MHC genes are extraordinarily polymorphic, often showing elevated nonsynonymous relative to synonymous sequence variation and sharing presumably ancient polymorphisms between lineages. These patterns likely reflect pathogen‐mediated balancing selection, for example, rare‐allele or heterozygote advantage. Such selection is often reinforced by disassortative mating at MHC. We characterized exon 2 of MHC class II, corresponding to the hypervariable peptide‐binding region, in song sparrows (Melospiza melodia). We compared nonsynonymous to synonymous sequence variation in order to identify positively selected sites; assessed evidence for trans‐species polymorphisms indicating ancient balancing selection; and compared MHC similarity of socially mated pairs to expectations under random mating. Six codons showed elevated ratios of nonsynonymous to synonymous variation, consistent with balancing selection, and we characterized several alleles similar to those occurring in at least four other avian families. Despite this evidence for historical balancing selection, mated pairs were significantly more similar at MHC than were randomly generated pairings. Nonrandom mating at MHC thus appears to partially counteract, not reinforce, pathogen‐mediated balancing selection in this system. We suggest that in systems where individual fitness does not increase monotonically with MHC diversity, assortative mating may help to avoid excessive offspring heterozygosity that could otherwise arise from long‐standing balancing selection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号