首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Primate growth hormone (GH) has evolved rapidly, having undergone approximately 30% amino acid substitutions from the inferred ancestral eutherian sequence. Nevertheless, human growth hormone (hGH) is physiologically effective when administered to nonprimate mammals. In contrast, its functional counterpart, the human growth hormone receptor (hGHR), has evolved species specificity so that it responds only to Old World primate GHs. It has been proposed that this species specificity of the hGHR is largely caused by the Leu --> Arg change at position 43 after a prior His --> Asp change at position 171 of the GH. Sequence analyses supported this hypothesis and revealed that the transitional phase in the GH:GHR coevolution still persists in New World monkeys. For example, although the GH of the squirrel monkey has the His --> Asp substitution at position 171, residue 43 of its GHR is a Leu, the nonprimate residue. If the squirrel monkey truly represents an intermediate stage of GH:GHR coevolution, its GHR should respond to both hGH and nonprimate GH. Also, if the emergence of species specificity was a result of the selection for a more efficient GH:GHR interaction, then changing residue 43 of the squirrel monkey growth hormone receptor (smGHR) to Arg should increase its binding affinity toward higher primate GH. To test these hypotheses, we performed protein-binding assays between the smGHR and both human and rat GHs, using the surface plasmon resonance methodology. Furthermore, the effects of reciprocal mutations at position 43 of human and squirrel monkey GHRs are measured for their binding affinities toward human and squirrel monkey GHs. The results from the binding kinetic assays clearly demonstrate that the smGHR is in the intermediate state of the evolution of species specificity. Interestingly, the altered residue Arg at position 43 of the smGHR does not lead to an increased binding affinity. The implications of these results on the evolution of the GH:GHR interaction and on functional evolution are discussed.  相似文献   

4.
5.
Despite the lower site 1 affinity of the 20-kDa human growth hormone (20K-hGH) for the hGH receptor (hGHR), 20K-hGH has the same hGHR-mediated activity as 22-kDa human GH (22K-hGH) at low hGH concentration and even higher activity at high hGH concentration. This study was performed to elucidate the reason why 20K-hGH can activate hGHR to the same level as 22K-hGH. To answer the question, we hypothesized that the binding between the stem regions of hGHR could compensate for the weaker site 1 binding of 20K-hGH than that of 22K-hGH in the sequential binding with hGHR. To demonstrate it, we prepared 15 types of alanine-substituted hGHR gene at the stem region and stably transfected them into Ba/F3 cells. Using these cells, we measured and compared the cell proliferation activities between 20K- and 22K-hGH. As a result, the activity of 20K-hGH was markedly reduced than that of 22K-hGH in three types of mutant hGHR (T147A, H150A, and Y200A). Regarding these mutants, the dissociation constant of hGH at the first and second step (KD1 and KD2) in the sequential binding with two hGHRs was predicted based on the mathematical cell proliferation model and computational simulation. Consequently, it was revealed that the reduction of the activity in 20K-hGH was attributed to the change of not KD1 but KD2. In conclusion, these findings support our hypothesis, which can account for the same potencies for activating hGHR between 20K- and 22K-hGH, although the site 1 affinity of 20K-hGH is lower than that of 22K-hGH.  相似文献   

6.
7.
Chromosome mapping of the growth hormone receptor gene in man and mouse   总被引:2,自引:0,他引:2  
Pituitary growth hormone (GH) is essential for normal growth and development in animals and GH deficiency leads to dwarfism. This hormone acts via specific high-affinity cell surface receptors found in liver and other tissues. The recent cloning and sequencing of cDNAs encoding human and rabbit GH receptors (GHR) has demonstrated that this receptor is unrelated to any previously described cell membrane receptor or growth factor receptor. We have used the cloned human GHR cDNA to map the GHR locus to the proximal short arm of human chromosome 5, region p13.1----p12, and to mouse chromosome 15 by Southern blot analysis and in situ hybridization. While human chromosome 5 carries several genes for hormone and growth factor receptors, GHR is the only growth-related gene so far mapped to the short arm. Inasmuch as GHR is the first gene with apparently homologous loci on human chromosome 5 and mouse chromosome 15, it identifies a new homologous conserved region. In humans, deficiency of GH receptor activity probably causes Laron-type dwarfism, an autosomal recessive disorder prevalent in Oriental Jews. In mice, the autosomal recessive mutation miniature (mn) is characterized by severe growth failure and early death and has been mapped to chromosome 15. Our assignment of Ghr to mouse chromosome 15 suggests this as a candidate gene for the mn mutation.  相似文献   

8.
9.
10.
11.
12.
13.
Two truncated isoforms of growth hormone (GH) receptor (GHR) were identified in mice and in humans. The proteins encoded by these isoforms lack most of the intracellular domain of the GHR and inhibit GH action in a dominant negative fashion. We have quantified the mRNAs encoding the GHR isoforms in mouse tissues by use of real-time RT-PCR and examined the effect of GH excess or deficiency on regulation of mRNA levels of the GHR isoforms in vivo. In the liver, the truncated GHR mRNAs (mGHR-282 and mGHR-280) were 0.5 and <0.1%, respectively, the level of full-length GHR (mGHR-fl). In skeletal muscle, the values were 2-3 and 0.1-0.5% of mGHR-fl, respectively, and in subcutaneous fat, the values were 3-5 and 0.1-0.5% of mGHR-fl, respectively. The bovine GH transgenic mice showed a significant increase of mGHR-fl in liver but a significant decrease in skeletal muscle, with no difference in subcutaneous fat when compared with control mice. The lit/lit mice showed a significant decrease of mGHR-fl in liver, no difference of mGHR-fl in muscle, and a significant increase of mGHR-fl in subcutaneous fat when compared with lit/+ mice. The mRNA of mGHR-282 was regulated in parallel with mGHR-fl in all tissues of all mice examined, whereas that of mGHR-280 was not changed in either GH-excess or GH-deficient states. In conclusion, two truncated isoforms of GHR mRNAs were detected in liver, skeletal muscle, and subcutaneous fat of mice. The ratio of GHR-tr to GHR-fl mRNA was tissue specific and not affected by chronic excess or deficiency of GH.  相似文献   

14.
15.
Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.  相似文献   

16.
尼罗罗非鱼(Oreochromis niloticus)雌雄鱼生长差异明显,为了探讨其原因,本文采用RT-PCR方法克隆了尼罗罗非鱼生长激素(Growthhormone,GH)及其受体(Growth hormone receptor,GHR)的cDNA序列,并应用半定量RT-PCR方法比较了雌、雄尼罗罗非鱼垂体GHmRNA、肝脏GHRmRNA、肌肉GHRmRNA的表达差异。序列分析表明:GH开放阅读框为615bp,共编码204个氨基酸;GHR开放阅读框为1908bp,共编码635个氨基酸。以RT-PCR方法研究了GH、GHR在各组织的分布情况,结果表明:GH仅在垂体中检测到有表达,而GHR在所检测的18种组织中均有表达,其中以肝脏、肌肉、性腺、下丘脑、胸腺表达量较高。以半定量RT-PCR方法进一步比较了雌、雄尼罗罗非鱼垂体GHmRNA、肝脏GHRmRNA、肌肉GHRmRNA的表达量,结果表明:雄鱼垂体GHmRNA和肝脏GHRmRNA的表达量均显著高于雌鱼,肌肉GHRmRNA的表达量则无显著差异,推测垂体GHmRNA和肝脏GHRmRNA表达的雌雄差异是尼罗罗非鱼雌雄生长差异的主要原因之一。  相似文献   

17.
The growth hormone receptor (GHR) is expressed as one active, full-sequence isoform and one truncated, inactive one that lacks the intracellular signaling domain. The aim of this study was to investigate the variation in the tissue expression of the full and truncated mRNA and protein. Epstein-Barr virus-transformed human B lymphocyte lines were established from 9 normal individuals with a height standard deviation score (SDS) of - 0.1 +/- 1.1 (mean +/- SD). Tissues were also collected from 3 Rhesus monkeys, whose GHR has 94.1 % homology with the human molecule. mRNA quantitation was determined by Real Time Quantitative PCR. Growth hormone receptor expression in transformed lymphocytes was also studied by fluorescence-activated cell sorter analysis. Both isoforms were expressed in transformed lymphocytes, but individual variation in the relative mRNA expression was small (truncated isoform percentage of total receptor mRNA: 17.1 +/- 4.4, mean +/- SD). There was no correlation between donors' height SDS and the expression of either isoform or the ratio between them. Protein expression by FACS analysis showed wider variation among the subjects; however, the relative ratio was similar in all the subjects. In monkey tissues, the truncated receptor showed a tissue-specific distribution. In conclusion, the expression of both isoforms in transformed lymphocytes from normal subjects shows small differences at the RNA or protein levels, and does not correlate with height SDS. Growth hormone splice isoforms show tissue specificity, suggesting local regulation of splicing. Tissues with relatively high expression of the truncated isoform are likely to be more resistant to the effects of GH due to the dominant negative effect of this isoform. In addition, the differential tissue expression might influence the levels of growth hormone binding protein in the immediate milieu of each tissue.  相似文献   

18.
19.
Regulation of rat growth hormone receptor gene expression   总被引:13,自引:0,他引:13  
A cDNA encoding the growth hormone (GH) receptor was cloned from rat liver. Both the nucleotide and translated amino acid sequence share greater than 70% similarity with the GH receptors from rabbit and human. An RNA probe was generated from this sequence for use in a solution hybridization assay to quantitate GH receptor mRNA expression in rat tissues. Expression was detected in 9/12 tissues examined, with the highest levels observed in the liver. Expression in liver, kidney, heart and muscle was developmentally regulated, being low at birth and rising to adult levels in 5 weeks. No difference was observed between hepatic expression in males and females, although livers from pregnant rats had elevated levels. Hypophysectomy and GH treatment did not affect hepatic GH receptor mRNA levels.  相似文献   

20.
GH specifically interacts with a soluble binding protein in serum. The GH-binding protein (GHBP) has been shown to contain the extracellular portion of the cell surface GH receptor (GHR). In rats and mice there is a unique mRNA that encodes the GHBP. This mRNA contains an alternatively spliced exon that replaces the transmembrane and intracellular domains of the receptor with a short hydrophilic carboxy-terminus of 17 and 25 amino acids, respectively, in rats and mice. In humans and other species no mRNAs encoding the GHBP have been identified, suggesting that the GHBP is in these cases a proteolytically processed GHR. In this study a monoclonal antibody (GHBP 4.3) was raised to the rat GHBP using as immunogen a synthetic peptide containing the unique C-terminal 17 amino acids that are not found in the rat GHR. As predicted, this antibody is specific to rat GHBP and does not cross-react with rat GHR. In combination with polyclonal and monoclonal antibodies that recognize both GHBP and GHR, this antibody was used to show that all, or most, of the GHBP in rat serum is indeed derived from the alternatively spliced GHBP mRNA and not from proteolytic processing of the GHR. In addition, endogenous rat serum GHBP was found to exist in two forms, with apparent mol wt of 52 and 44 kDa, arising from a single protein core of 32 kDa by extensive glycosylation. The concentrations of GHBP in male and female rat plasma were also estimated to be 300 and 575 ng/ml, respectively (measured in nonglycosylated GHBP equivalents).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号