首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
线粒体为细胞正常生命活动提供物质和能量,然而各种因素会导致线粒体损伤,衰老及功能紊乱。线粒体自噬是维持细胞稳态,及时清除细胞潜在危险因素的关键过程,FUNDC1是新近发现的一种线粒体自噬受体蛋白,在介导线粒体自噬方面有重要作用。运动是激活线粒体自噬的应激条件,其诱导骨骼肌线粒体自噬及FUNDC1在此过程中的作用机制正逐步明确。本文介绍FUNDC1的结构、功能和调节,分析FUNDC1与线粒体分裂、融合、自噬的关系,探讨运动诱导线粒体自噬过程中FUNDC1的调控机制,为进一步研究提供参考依据。  相似文献   

2.
线粒体为细胞正常生命活动提供物质和能量,然而各种因素会导致线粒体损伤,衰老及功能紊乱。线粒体自噬是维持细胞稳态,及时清除细胞潜在危险因素的关键过程,FUNDC1是新近发现的一种线粒体自噬受体蛋白,在介导线粒体自噬方面有重要作用。运动是激活线粒体自噬的应激条件,其诱导骨骼肌线粒体自噬及FUNDC1在此过程中的作用机制正逐步明确。本文介绍FUNDC1的结构、功能和调节,分析FUNDC1与线粒体分裂、融合、自噬的关系,探讨运动诱导线粒体自噬过程中FUNDC1的调控机制,为进一步研究提供参考依据。  相似文献   

3.
可溶性晚期糖基化终末产物受体(soluble receptor for advanced glycation end products,sRAGE)作为内源性保护物质,能够拮抗心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤发生,重要机制是减轻心肌细胞凋亡。而近年来随着细胞死亡研究的深入,细胞自噬被认为是一种新的细胞程序性死亡。sRAGE是否可以抑制缺血/再灌引起的心肌细胞自噬尚未见报道。本文研究证明,sRAGE可抑制缺血/再灌注引起的心肌细胞自噬。以心肌细胞缺氧/复氧模拟心肌细胞缺血/再灌注模型,蛋白质印迹检测自噬门户蛋白beclin-1的表达,激光共聚焦显微镜检测自噬小体及自噬溶酶体的形成。心肌再灌注期间,心肌细胞自噬小体增加,而自噬溶酶体下降。细胞内自噬小体堆积,说明心肌细胞缺血/再灌注使自噬小体与溶酶体结合受损,清除发生障碍。与缺血/再灌注(I/R)组比较,缺血/再灌+sRAGE(I/R+sRAGE)组的自噬流减弱。此外,自噬门户蛋白beclin-1也表达下降。以上结果从细胞形态学和蛋白水平两方面说明,sRAGE抑制了I/R引起的心肌细胞自噬。换言之,sRAGE可以直接作用于心肌细胞拮抗缺血/再灌注损伤,其保护性作用可能与抑制心肌细胞自噬有关。  相似文献   

4.
Sirtuin蛋白家族是烟酰胺腺嘌呤二核苷酸依赖性的去乙酰化蛋白酶类,通过对下游靶基因的调控,抵抗氧化应激,维持线粒体功能,参与调节细胞自噬及凋亡,与心肌缺血/再灌注损伤(MIRI)的发生发展密切相关。本文主要综述Sirtuin蛋白家族的心肌细胞保护机制及其在防治MIRI中的调控作用,为其在相关病理及生理机制的研究提供有益参考。  相似文献   

5.
自噬是由溶酶体介导的一种降解途径,通过降解细胞器内受损及冗余成分为氨基酸,脂肪酸,核苷等小分子,供细胞再利用.因此,自噬在维持细胞内环境的稳定性起着十分重要的作用.自噬一般被认为是细胞在氧化应激及营养匮乏等条件下的一种自我保护机制.通常情况下,自噬维持在较低水平,但是当ATP能量耗竭、活性氧的释放,线粒体膜通道的开放都会导致自噬活性迅速升高.在心脏中,自噬维持在较低水平,如果异常,则会导致心脏功能异常和心衰.虽然自噬在缺血再灌注等生理过程中的活性显著增强,但是其机制并不是十分明确,仍需要深入研究.本文综述了自噬在缺血再灌注过程中的作用,阐明了潜在的机制,表明自噬可能为缺血再灌注过程中的损伤作用提供一种新的靶向治疗手段.  相似文献   

6.
线粒体为细胞正常生命运动提供能量和物质;然而各种因素会导致线粒体损伤,衰老及功能紊乱,它们是细胞潜在的危险因素,必需及时清除,线粒体自噬可以起到这一作用,维持细胞稳态。当细胞处于恶劣环境时,线粒体自噬可通过降解线粒体补充生命必需物质,从而度过危机维持生存。另外线粒体自噬会在某些情况下通过降解正常线粒体来维持线粒体质量和数量的平衡。不同生物中具有不同的线粒体自噬途径和机制,酵母中主要通过Atg32磷酸化调控线粒体自噬;哺乳动物中则存在分别由Parkin-PINK1、Nix、FUNDC1等不同蛋白介导的线粒体自噬调控机制;植物线粒体自噬的研究主要集中在拟南芥,其途径及具体调控机制尚不明确。综述了近年来酵母、动物和植物中线粒体自噬的作用机制及调控因子等方面的研究进展。  相似文献   

7.
线粒体(mitochondrion)是一种存在于大多数真核细胞中由双层膜包被的细胞器,是细胞进行有氧呼吸和能量来源的主要场所。由于各种因素导致的线粒体损伤及功能紊乱,是细胞潜在的危险因素,必需及时清除,以维持细胞内环境稳态。而细胞内受损的线粒体主要通过选择性的自噬过程,即线粒体自噬来介导清除。对于心肌细胞这种有丝分裂后细胞,线粒体自噬功能的改变对其细胞质量控制的影响尤为显著。在生理状态及应激状态下,多种因子可调控心肌细胞线粒体自噬,进而发挥心肌细胞质量控制的作用。近年来多项研究均表明,线粒体自噬与心肌衰老之间存在着密切的联系。本文现就线粒体自噬及其与心肌衰老的关系进行综述。  相似文献   

8.
目的:观察大鼠心肌缺血再灌注损伤模型不同时间点线粒体及线粒体自噬的变化。方法:成年雄性SD大鼠40只,随机分为假手术对照组(sham组):开胸不进行冠状动脉左前降支(Left anterior descending coronary artery,LAD)血流阻断;缺血再灌注组2h组(I/R 2 h组)、24 h组(I/R 24 h组)及48 h组(I/R 48 h组),以上3组均阻断LAD 30 min,分别于再灌注后2 h、24 h、48 h观察心肌ATP含量,线粒体膜电位水平变化,透射电镜下观察线粒体及线粒体自噬超微结构变化,western blot法测定线粒体自噬蛋白PINK1、Parkin、p62、LC3B及线粒体膜蛋白Tom20表达水平。结果:与对照组相比,线粒体膜电位水平及心肌组织ATP含量于再灌注2 h开始下降,24 h下降最显著,48 h有所改善,线粒体超微结构损伤再灌注24 h最为明显,48 h有所改善。PINK1、Parkin、p62蛋白表达于损伤后2 h增强,于再灌注后24 h升高最显著,持续至48 h,LC3BⅡ表达于损伤后24 h增强,同样持续至48 h。透射电镜下可见线粒体自噬体于再灌注后24 h明显增多,并持续至48 h。结论:大鼠心肌缺血再灌注损伤后,线粒体功能与形态损伤以损伤后24 h最为显著,至损伤后48 h后好转;线粒体自噬水平升高以损伤后24 h最为显著,且维持至损伤后48 h,提示两者之间可能存在关联。  相似文献   

9.
细胞自噬(autophagy)是将细胞内受损、变性或衰老的蛋白质以及细胞器运输到溶酶体内进行消化降解的过程.细胞自噬既是一种广泛存在的正常生理过程,又是细胞对不良环境的一种防御机制,参与多种疾病的病理过程.正常水平的自噬可以保护细胞免受环境刺激的影响,但自噬过度和自噬不足却可能导致疾病的发生.在心脏中,心肌细胞自噬对维持心肌功能具有重要的作用,自噬的异常可能导致各种心肌疾病如溶酶体储积症(Danon disease)等.各种心血管刺激如心肌缺血(ischemia)、再灌注(reperfusion)损伤、慢性缺氧(chronic hypoxia)等均可诱导心肌细胞自噬增强.而这些情况下心肌细胞自噬的作用还不清楚:它是否是一种潜在的细胞存活机制还是导致细胞死亡或疾病发生的病理性机制,或者是同时具有两种作用,目前还没有定论.心脏疾病是心肌功能出现异常时产生的各种病理状态的总称.在多种心脏疾病中,均伴随有心肌细胞自噬的改变,且影响着疾病的发生发展.在心肌肥厚(hypertrophic cardiomyopathy)中,细胞自噬程度降低而加剧心肌肥厚;在心力衰竭(heart failure,HF)中,细胞自噬增强可导致心肌细胞自噬性死亡;而在心肌梗死(myocardial infarction,MI)中,细胞自噬增强可减小梗死面积.但是细胞自噬在心脏疾病中到底扮演着怎样的角色,取决于细胞自噬发生的水平及病理状态.目前越来越多的人开始关注药物与细胞自噬调节之间的联系,且主要集中于抗肿瘤药物及心血管调节药物的研究.另外,有报道维生素类以及雌激素受体拮抗剂他莫西芬对细胞自噬也具有调节作用.研究心肌细胞自噬与心脏疾病的关系,以及药物对细胞自噬的调节,将有利于从自噬的角度探讨心脏疾病的发生发展过程及机制,开发出治疗心脏疾病的药物.  相似文献   

10.
线粒体自噬是指细胞通过自噬的机制选择性地清除线粒体的过程。通过该途径,细胞可降解并清除受损或功能障碍的线粒体,以维持细胞内线粒体质量和数量的平衡,从而维持细胞稳态。在生理状态及应激状态下,多种因子可调控心肌细胞线粒体自噬,进而发挥保护心肌细胞的作用。本文就线粒体自噬及其调控机制以及其在心肌保护中的作用做一综述。  相似文献   

11.
胰岛素抵抗(IR)是诱发许多代谢疾病的关键因素,包括代谢综合征、非酒精性脂肪性肝病、动脉粥样硬化和2型糖尿病(T2DM)。随着相关代谢疾病日益增多,寻找新的治疗靶点迫在眉睫。线粒体自噬是一种选择性自噬,其通过清除受损和功能失调的线粒体以维持正常线粒体功能和能量代谢。研究发现,线粒体自噬在代谢疾病中有积极作用,线粒体自噬受到各种信号通路与信号分子调控而改善代谢疾病,如AMPK/ULK1、PINK1/Parkin信号通路以及BNIP3/Nix和FUNDC1等信号分子。本文阐述了线粒体自噬在胰岛素抵抗中的作用及调控机制,综述了近年的相关研究进展。  相似文献   

12.
microRNA是一类转录后具有调节活性的内源性小分子RNA,通过与靶基因mRNA的3'UTR结合负性调控基因的表达从而参与多种心血管疾病的发生发展,其中对心肌缺血再灌注(I/R)的影响最为重要。microRNA通过调节自噬相关基因调控自噬。心肌细胞自噬对维持心功能具有重要作用,那么,在心肌I/R中,microRNA是否通过调节自噬来发挥作用呢?本文将对microRNA调控自噬在心肌缺血再灌注中作用机制进行综述。  相似文献   

13.
目的:探讨SIRT3调控的线粒体自噬对高糖加重神经元缺氧再灌注损伤的影响及机制。方法:高糖(50 mmol/L)干预HT22细胞后,构建细胞缺氧/复氧模型,利用SIRT3抑制剂3-TYP抑制SIRT3表达。倒置显微镜观察细胞形态改变,CCK8法检测细胞存活率,流式细胞术检测细胞凋亡率,TMRE荧光试剂盒检测细胞线粒体膜电位,RT-qPCR、Western blot检测相关分子的基因和蛋白质表达。结果:高糖使神经元缺氧再灌注后的细胞碎片进一步增加,细胞存活率降低,细胞凋亡率升高(P<0.05)。此外,高糖降低了神经元缺氧再灌注后的线粒体膜电位(P<0.05)。进一步研究发现,高糖上调神经元缺氧再灌注后线粒体分裂相关蛋白DRP1的表达水平,降低了线粒体融合相关蛋白OPA1和线粒体外膜蛋白TOM20的表达;并且增加了自噬相关蛋白LC3Ⅱ、Beclin-1和线粒体自噬相关蛋白PINK1、Parkin的表达;同时,高糖升高了SIRT3的基因和蛋白质表达(P<0.05)。而SIRT3抑制剂3-TYP使神经元高糖缺氧再灌注损伤加重,同时进一步上调DRP1、LC3Ⅱ和PINK1的蛋白质表达(P<0.05)。结论:高糖可显著加重神经元缺氧再灌注损伤,破坏细胞线粒体功能,激活细胞线粒体自噬;SIRT3可抑制PINK1-Parkin通路介导的线粒体自噬并减轻神经元高糖缺氧再灌注损伤。  相似文献   

14.
线粒体自噬指细胞通过自噬机制选择性除去损伤或多余的线粒体。真核生物通过线粒体自噬调控线粒体质量,维持供能细胞器的功能。大量研究表明,帕金森病相关基因PINK1和parkin可通过线粒体自噬参与并维持线粒体功能。PINK1与parkin能协同特异性识别损伤的线粒体,PINK1作为线粒体质量调控的探测器被活化,此过程中泛素化酶和去泛素化酶对维持parkin活性及线粒体自噬的效率有重要作用。本文主要总结PINK1/parkin通路在线粒体自噬中的功能与作用。  相似文献   

15.
由于线粒体在生物氧化和能量转换过程中会产生活性氧,线粒体DNA又比核DNA更容易发生突变,因此线粒体是一种比较容易受到损伤的细胞器.及时清除细胞内受损的线粒体对细胞维持正常的状态具有重要的作用.细胞主要通过自噬来清除损伤线粒体,维持细胞稳态.越来越多的研究表明,线粒体自噬是一种特异性的过程,线粒体通透性孔道通透性的改变在这个过程中起着重要的作用.线粒体自噬在维持细胞内线粒体的正常功能和基因组稳定性上起着重要作用,但是线粒体发生自噬的信号通路及其调控机制还有待进一步深入研究.  相似文献   

16.
线粒体动力相关蛋白(dynamin-related protein 1,Drp1)是介导线粒体分裂的主要蛋白,Drp1表达增加,线粒体分裂增加,网状结构破坏,反之则有助线粒体融合,促进损伤线粒体修复。心肌缺血再灌注损伤与活性氧(ROS)的大量产生,线粒体通透性转换孔(MPTP)的开放及细胞凋亡等密切相关。近年来大量研究发现Drp1介导的线粒体分裂参与心肌缺血再灌注损伤,本文就Drp1参与心肌缺血再灌注损伤的相关机制作一简要综述。  相似文献   

17.
巨自噬是一种普遍存在的,由溶酶体介导,降解长寿命蛋白质和细胞器的分解代谢过程.巨自噬对心脏疾病调节有双向作用:通过清除损伤的细胞器和蛋白质聚合物,维持内环境稳定,促进细胞存活;严重损伤时,巨自噬过度激活导致心肌细胞死亡.本文综述巨自噬在心脏疾病调节中的研究进展,包括巨自噬的形成和凋亡的关系,探讨巨自噬作为调节因子,对缺血-再灌注、心肌肥大和心力衰竭的双向作用,为疾病治疗开辟新思路.  相似文献   

18.
恢复心肌血流量是目前针对急性心肌梗塞的有效治疗方式,但是在心肌再灌注过程中会进一步引起心肌细胞的坏死和调亡。二氮嗪是一种线粒体ATP敏感型钾离子通道开放剂,研究证明二氮嗪预处理具有心肌保护功能。本研究主要探讨二氮嗪再灌注处理是否具有心肌细胞保护作用并探讨其分子机制。以体外培养的H9c2心肌细胞为研究对象,通过联合缺氧模拟在体心肌缺血复灌损伤,检测细胞凋亡、线粒体膜电位、细胞内活性氧及钙离子各项指标的变化。结果发现,与正常组(control)相比,缺血再灌损伤组(ischemia-reperfusion injury,IRI)细胞活性显著下降,细胞凋亡率显著升高,线粒体跨膜电位(MMP)下降,同时细胞内活性氧(reactive oxygen species,ROS)和钙离子大量爆发,二氮嗪在这一过程中通过抑制细胞内ROS的增加、保护线粒体膜电位起到心肌细胞保护作用,并且其保护作用与细胞内另一种重要的第二信使钙离子没有直接关系。  相似文献   

19.
目的:观察异丙酚对离体大鼠心肌缺血/再灌注损伤的影响并从氧化应激和线粒体介导的凋亡方面探讨其作用机制。方法:应用Langendorff离体心脏灌注系统建立心肌缺血/再灌注损伤模型。40只SD大鼠随机分为正常对照组、缺血/再灌注模型(I/R)组、异丙酚15、30、60μmol.L-1组。除正常对照组外,各组分别平衡灌注20 min后,常温全心停灌25 min,再灌注30 min。Powerlab/8s仪记录各组平衡末、缺血前及再灌30 min时的各项心功能指标并测定冠脉流出液中乳酸脱氢酶(LDH)、肌酸激酶(CK)活性;检测心肌线粒体活力、膜肿胀度、锰超氧化物岐化酶(Mn-SOD)活性和丙二醛(MDA)含量;流式细胞仪检测心肌细胞凋亡;流式细胞术检测Bcl-2和Bax的表达,免疫组化法测定天冬氨酸特异的半胱氨酸蛋白酶(caspase)-3,9,8蛋白的表达。结果:与I/R组相比,异丙酚30、60μmol.L-1能明显改善缺血/再灌注后的心功能,减弱冠脉流出液中LDH、CK的活性(P〈0.05);心肌线粒体活力有所恢复,膜肿胀度减轻,Mn-SOD活性升高,MDA生成明显减少(P〈0.05),心肌细胞凋亡明显减少,Bcl-2表达上调,Bax表达下调,caspase-3,9阳性表达细胞数明显减少(P〈0.05)。结论:异丙酚明显减轻缺血/再灌注所致的心肌线粒体的过氧化损伤,抑制线粒体途径的凋亡,可能是其心肌保护作用机制之一。  相似文献   

20.
MicroRNA是一种内源性的小核苷酸片段,已检测出700余种。大约30%的人类基因受miRNAs调节。其中miRNA-214在不同细胞有多种生物学作用,通过调控多种靶基因在诸多疾病中都发挥着重要作用。microRNA-214在心肌损伤及免疫方面也发挥积极的作用,通过抑制心肌缺血/再灌注的细胞凋亡、HIF1AN等机制参与心肌缺血/再灌注,其有可能成为预防和治疗治疗心肌缺血/再灌注损伤性疾病的新型靶向分子,为临床预防和治疗心肌缺血/再灌注损伤性疾病提供思路和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号