首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
促性腺激素释放激素的结构及其生物学功能   总被引:4,自引:0,他引:4  
促性腺激素释放激素(GnRH)是下丘脑分泌的十肽激素,是神经、免疫、内分泌三大调节系统互相联系的重要信号分子,对生殖调控具有重要意义.GnRH类似物是近年来应用最广的多肽类激素新药之一.就GnRH及其受体的结构及分布、GnRH在垂体和性腺水平调控生殖的一系列证据、影响GnRH释放的因素等进行了综述,并展望了GnRH研究的发展趋势及应用前景.  相似文献   

2.
目的:探讨芹菜素在10-9mol/L浓度时对雌性大鼠生殖功能的影响。方法:应用侧脑室注射方法观察芹菜素对雌性大鼠生殖轴激素含量的影响。在侧脑室注射后第3天取血浆,采用放免技术测定血浆中促性腺激素释放激素(GnRH)、卵泡刺激素(FSH)、黄体生成素(LH)、雌二醇(E2)、孕酮(P)的含量。结果:在给药后第3天血浆中促性腺激素释放激素(GnRH)、卵泡刺激素(FSH)、黄体生成素(LH)的含量增加而雌二醇(E2)、孕酮(P)的含量降低,差异有显著性。结论:芹菜素抑制雌二醇(E2)合成中芳香化酶的活性实现对雌二醇(E2)、孕酮(P)分泌的抑制。芹菜素通过影响雌激素受体而使下丘脑的促性腺激素释放激素(GnRH)和腺垂体的卵泡刺激素(FSH)、黄体生成素(LH)分泌增加。  相似文献   

3.
促黄体素β基因表达中的转导通路及转录因子   总被引:1,自引:0,他引:1  
Li L  Wang GL 《生理科学进展》2004,35(3):215-218
促性腺激素释放激素 (GnRH)为下丘脑促垂体激素 ,其脉冲式地释放调节垂体促卵泡素(FSH)和促黄体素 (LH)的合成与释放 ,进而调节动物的生殖活动。LH是由α亚基和 β亚基组成的异二聚体糖蛋白激素 ,其中 β亚基决定激素的特异性。LHβ基因的表达是由GnRH诱发的 ,此过程主要依靠PKC和Ca2 两类信号通路 ,并调节LHβ基因的表达。目前已经发现 ,多种转录因子 ,如早期生长反应基因 (Egr 1)、核受体SF 1基因、Ptx1基因和Sp1基因等 ,通过与LHβ亚基基因的启动子区直接结合 ,而对该基因的表达进行调控。  相似文献   

4.
灵长类月经周期的调控与啮齿类不同,在下丘脑没有促性腺激素释放激素(GnRH)的周期性分泌中枢。排卵前促性腺激素(GTH)峰的出现无需下丘脑活动的增强和GnRH分泌的增加。GnRH对垂体GTH的周期性分泌不起控制作用,只起“允许作用”,起控制作用的是卵巢雌激素。雌二醇作用于垂体促性腺细胞的两个功能池,控制GnRH对它们的作用,完成调节GTH分泌的作用。  相似文献   

5.
目的:分析大鼠黄体生成素(LH)表达的受体后信号转导机制。方法:促性腺激素(GTH)细胞内蛋白激酶C(PKC)兴奋或抑制后,用促性腺激素释放激素(GnRH)脉冲刺激,然后用实时荧光定量PCR方法测定细胞LH的β亚基(LHβ)mRNA的表达量,并与空白组比较。结果:LHβmRNA随着PKC活性的升高而显著升高,随着PKC活性的降低而显著降低。结论:GnRH脉冲刺激引起LHβmRNA表达,其受体后的信号转导是PKC-Ca2+途径。  相似文献   

6.
鱼类生殖内分泌学研究的进展及其在渔业生产中的应用   总被引:1,自引:0,他引:1  
鱼类生殖活动的整个调节过程包括:感觉器官把外界环境的刺激(如温度、光照、降雨等)传送到脑,使下丘脑产生促性腺激素释放激素(GnRH)和促性腺激素释放的抑制因素(GRIF),激发或抑制脑垂体合成和释放促性腺激素(GtH);促性腺激素作用于性腺并促使它分泌  相似文献   

7.
目的 分析大鼠LHβ mRNA表达的促性腺激素释放激素(GnRH)受体后信号转导机制.方法 将体外培养的大鼠腺垂体促性腺激素(GTH)细胞用cAMP的兴奋剂FSK或抑制剂SQ22536处理后,再用高频GnRH脉冲刺激,然后用实时荧光定量PCR法测定细胞LHβ mRNA的Ct值,并与空白组比较.结果 LHβ mRNA的Ct值随着GTH细胞cAMP含量的增高而显著降低,随着cAMP含量的降低而显著增高.结论 cAMP是高频GnRH脉冲刺激所引起的LHβ mRNA表达的受体后的信号转导途径.  相似文献   

8.
垂体促性腺激素是控制生殖机能的重要环节。对促性腺激素的生理作用及其分泌的调节虽然已有一般的概念,但是受到学科发展的限制,有关促性腺激素的很多方面还是不够清楚的。即使垂体具有两种促性腺激素——促卵泡成熟激素(FSH)和促黄体生成激素(LH)——的说法,看来也要作些补充,通过大白鼠和小白鼠的实验说明催乳激素具有促  相似文献   

9.
利用在体注射实验和放射免疫测定法,研究了多巴胺能药物对性腺处于再发育期虎纹蛙的促性腺激素释放激素(GnRH)及促黄体激素(LH)分泌活动的影响。结果是:多巴胺(DA)及其激素剂阿扑吗啡(APO)可显著降低血浆LH水平;而多巴胺的拮抗剂-地欧酮(DOM)可显著增加垂体LH含量。DA对脑中cGnRH-Ⅱ的合成有抑制作用,而OM对其mGnRH的释放有一定的刺激作用。结果表明:DA可在脑及垂体水平分别抑制虎纹蛙GnRH和LH的释放,DA对LH释放的抑制作用很可能是通过D2受体实现的。  相似文献   

10.
外源激素对雄性黄鳝性类固醇激素分泌的影响   总被引:13,自引:0,他引:13  
硬骨鱼类促性腺激素(GTH)的分泌受到双重调控,即促性腺激素释放激素(GnRH)的刺激和促性腺激素释放抑制因子(GRIF)的抑制1.    相似文献   

11.
Exposure of females to a male pheromone accelerates pulsatile gonadotropin-releasing hormone (GnRH) secretion in goats. Recent evidence has suggested that neurons in the arcuate nucleus (ARC) containing kisspeptin and neurokinin B (NKB) play a pivotal role in the control of GnRH secretion. Therefore, we hypothesized that these neurons may be the central target of the male pheromone. To test this hypothesis, we examined whether NKB signaling is involved in the pheromone action, and whether ARC kisspeptin/NKB neurons receive input from the medial nucleus of the amygdala (MeA)—the nucleus suggested to relay pheromone signals. Ovariectomized goats were implanted with a recording electrode aimed at a population of ARC kisspeptin/NKB neurons, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA) volleys, was measured. Pheromone exposure induced an MUA volley and luteinizing hormone (LH) pulse in control animals, whereas the MUA and LH responses to the pheromone were completely suppressed by the treatment with an NKB receptor antagonist. These results indicate that NKB signaling is a prerequisite for pheromone action. In ovariectomized goats, an anterograde tracer was injected into the MeA, and possible connections between the MeA and ARC kisspeptin/NKB neurons were examined. Histochemical observations demonstrated that a subset of ARC kisspeptin/NKB neurons receive efferent projections from the MeA. These results suggest that the male pheromone signal is conveyed via the MeA to ARC kisspeptin neurons, wherein the signal stimulates GnRH pulse generator activity through an NKB signaling-mediated mechanism in goats.  相似文献   

12.
Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood. We explored the role of NKB in the control of LH secretion in the female rat as follows. 1) We examined the effect of an NKB agonist (senktide, 600 pmol, administered into the lateral cerebral ventricle) on luteinizing hormone (LH) secretion. In the presence of physiological levels of estradiol (E(2)), senktide induced a profound increase in serum levels of LH and a 10-fold increase in the number of Kiss1 neurons expressing c-fos in the Arc (P < 0.01 for both). 2) We mapped the distribution of NKB and NK3R mRNAs in the central forebrain and found that both are widely expressed, with intense expression in several hypothalamic nuclei that control reproduction, including the Arc. 3) We studied the effect of E(2) on the expression of NKB and NK3R mRNAs in the Arc and found that E(2) inhibits the expression of both genes (P < 0.01) and that the expression of NKB and NK3R reaches its nadir on the afternoon of proestrus (when circulating levels of E(2) are high). These observations suggest that NKB/NK3R signaling in Kiss1/NKB/Dyn-producing neurons in the Arc has a pivotal role in the control of gonadotropin-releasing hormone (GnRH)/LH secretion and its regulation by E(2)-dependent negative feedback in the rat.  相似文献   

13.
Rance NE 《Peptides》2009,30(1):111-122
Menopause is characterized by depletion of ovarian follicles, a reduction of ovarian hormones to castrate levels and elevated levels of serum gonadotropins. Rather than degenerating, the reproductive neuroendocrine axis in postmenopausal women is intact and responds robustly to the removal of ovarian hormones. Studies in both human and non-human primates provide evidence that the gonadotropin hypersecretion in postmenopausal women is secondary to increased gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. In addition, menopause is accompanied by hypertrophy of neurons in the infundibular (arcuate) nucleus expressing KiSS-1, neurokinin B (NKB), substance P, dynorphin and estrogen receptor alpha (ERalpha) mRNA. Ovariectomy in experimental animals induces nearly identical findings, providing evidence that these changes are a compensatory response to ovarian failure. The anatomical site of the hypertrophied neurons, as well as the extensive data implicating kisspeptin, NKB and dynorphin in the regulation of GnRH secretion, provide compelling evidence that these neurons are part of the neural network responsible for the increased levels of serum gonadotropins in postmenopausal women. We propose that neurons expressing KiSS-1, NKB, substance P, dynorphin and ERalpha mRNA in the infundibular nucleus play an important role in sex-steroid feedback on gonadotropin secretion in the human.  相似文献   

14.
Kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn) are coexpressed within KNDy neurons that project from the hypothalamic arcuate nucleus (ARC) to GnRH neurons and numerous other hypothalamic targets. Each of the KNDy neuropeptides has been implicated in regulating pulsatile GnRH/LH secretion. In isolation, kisspeptin is generally known to stimulate, and Dyn to inhibit LH secretion. However, the NKB analog, senktide, has variously been reported to inhibit, stimulate or have no effect on LH secretion. In prepubertal mice, rats and monkeys, senktide stimulates LH secretion. Furthermore, in the monkey this effect is dependent on kisspeptin signaling through its receptor, GPR54. The present study tested the hypotheses that the stimulatory effects of NKB on LH secretion in intact rats are mediated by kisspeptin/GPR54 signaling and are independent of a Dyn tone. To test this, ovarian-intact prepubertal rats were subjected to frequent automated blood sampling before and after intracerebroventricular injections of KNDy neuropeptide analogs. Senktide robustly induced single LH pulses, while neither the GPR54 antagonist, Kp-234, nor the Dyn agonist and antagonist (U50488 and nor-BNI, respectively) had an effect on basal LH levels. However, Kp-234 potently blocked the senktide-induced LH pulses. Modulation of the Dyn tone by U50488 or nor-BNI did not affect the senktide-induced LH pulses. These data demonstrate that the stimulatory effect of NKB on LH secretion in intact female rats is dependent upon kisspeptin/GPR54 signaling, but not on Dyn signaling.  相似文献   

15.
G A Bourne  S Das  N W Fahmy 《FEBS letters》1989,247(1):159-162
Phorbol 12-myristate 13-acetate (PMA) was used to determine whether the PMA-induced extracellular Ca2+-independent release of LH was dependent on sex, estradiol and de novo protein synthesis. Infusions of gonadotropin-releasing hormone (GnRH) or PMA in a perifusion system stimulated a partial secretion of LH from diestrous II and ovariectomized + estradiol-treated female pituitaries (responses inhibited by cycloheximide). In contrast, PMA was ineffective in stimulating PRL secretion from these pituitaries, as well as LH secretion from male or ovariectomized female pituitaries. These results indicate that the PMA-stimulated extracellular Ca2+-independent secretion of LH is a specific process which is dependent on sex, estradiol and de novo protein synthesis, and mimics the characteristics of the GnRH-stimulated responses.  相似文献   

16.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.  相似文献   

17.
The gonadotrope is a complex cell that expresses receptors for gonadotropin releasing hormone (GnRH) and estrogen. It has synthetic machinery for the production of 3 gonadotropin subunits which are assembled into two gonadotropins, luteinising hormone (LH) and follicle stimulating hormone (FSH). The production and secretion of LH and FSH are differentially regulated by GnRH and estrogen. Patterns of secretion of LH are dictated by the pulsatile release of GnRH from the median eminence as well as the feedback effects of estrogen. The means by which estrogen plays such an important role in the regulation of LH and FSH is reviewed in this chapter, with emphasis on work that has been done in the sheep. Estrogen regulates the second messenger systems in the gonadotrope as well as the number of GnRH receptors and the function of ion channels in the plasma membrane. Estrogen also regulates gene expression in these cells. Additionally, GnRH appears to regulate the level of estrogen receptor in the ovine gonadotrope, so there is substantial cross-talk between the signalling pathways for GnRH and estrogen. No clear picture has emerged as to how estrogen exerts a positive feedback effect on the gonadotrope and it is suggested that this might be forthcoming from more definitive studies on the way that estrogen regulates the second messenger systems and the trafficking of secretory vesicles.  相似文献   

18.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The regulation of luteinizing hormone (LH) activity is vital to normal reproductive functioning of the female. Although gonadotrophin-releasing hormone (GnRH) has a prominent role in the regulation of LH it is now believed that other peptides are also involved. Among these peptides is oxytocin. The addition of oxytocin to cultures of pituitary cells from female rats elicited a concentration-dependent secretion of LH. This secretion was enhanced in an oestrogenised environment and was inhibited by progesterone and testosterone. Oxytocin administered to female rats at pro-oestrus advanced the endogenous LH surge that occurs on the evening of pro-oestrus. Conversely oxytocin receptor antagonist suppressed the production of the LH surge in a dose-dependent manner, indicating that endogenous oxytocin is a crucial component of LH regulation. In the human female, oxytocin administered during the late follicular phase advanced the onset of the midcycle LH surge. Oxytocin added to rat pituitary cells in vitro induced LH synthesis. Furthermore rats administered oxytocin on pro-oestrus had higher LH pituitary content following development of the LH surge than did rats administered saline. Thus oxytocin promoted synthesis and replacement in the pituitary of LH released into the circulation. Incubation of pituitary pieces with oxytocin plus GnRH induced secretion of amounts of LH greater than the sum of the amounts released by oxytocin and GnRH separately. Additionally the increased LH levels observed in the peripheral circulation of pentobarbitone-anaesthetised rats administered GnRH were enhanced if the rats received oxytocin prior to the GnRH. Thus oxytocin synergised with GnRH in stimulating LH release. Addition of diBucAMP reduced the oxytocin-mediated augmentation and dideoxyadenosine enhanced the augmentation, suggesting that oxytocin worked most efficiently in a milieu low in cAMP activity. The use of a cell immunoblot assay revealed that individual cells responded differently to oxytocin and to GnRH and that the two peptides could act on the same cell. Perifusion studies performed on hemipituitaries demonstrated that a LH response could be determined by the presence of three peptides, oxytocin, neuropeptide Y and GnRH. Hence oxytocin is potentially involved also in multiple interactions during the process of LH regulation. LH regulation is therefore apparently the result of a community of peptides acting in a co-operative network.  相似文献   

20.
The salmon gonadotropin-releasing hormone (sGnRH) is considered to be involved in gonadal maturation via gonadotropin (GTH) secretion in salmonid fishes. However, there is no direct evidence for endogenous sGnRH-stimulated GTH secretion in salmonids. In this study, to clarify whether endogenous sGnRH stimulates GTH secretion, we examined the effects of the mammalian GnRH (mGnRH) antagonist [Ac-Delta(3)-Pro(1), 4FD-Phe(2), D-Trp(3,6)]-mGnRH on luteinizing hormone (LH) levels in 0-year-old masu salmon Oncorhynchus masou and sockeye salmon Oncorhynchus nerka. First, the effects of the GnRH antagonist on LH release were examined in 0-year-old precocious male masu salmon. GnRH antagonist treatment for 3 hr significantly inhibited an increase in plasma LH levels that was artificially induced by exogenous sGnRH administration, indicating that the GnRH antagonist is effective in inhibiting LH release from the pituitary. Subsequently, we examined the effect of the GnRH antagonist on LH synthesis in 0-year-old immature sockeye salmon that were pretreated with exogenous testosterone for 42 days to increase the pituitary LH contents; the testosterone treatment did not affect the plasma LH levels. GnRH antagonist treatment slightly but significantly inhibited an increase in the testosterone-stimulated pituitary LH content levels. However, no significant differences in the plasma LH levels were observed between the GnRH antagonist-treated and control groups. These results suggest that endogenous sGnRH is involved in LH secretion in salmonid fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号