共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gianmarco Caruso;Pierfrancesco Alaimo Di Loro;Marco Mingione;Luca Tardella;Daniela Silvia Pace;Giovanna Jona Lasinio; 《Biometrical journal. Biometrische Zeitschrift》2024,66(1):2200350
This work aims to show how prior knowledge about the structure of a heterogeneous animal population can be leveraged to improve the abundance estimation from capture–recapture survey data. We combine the Open Jolly-Seber model with finite mixtures and propose a parsimonious specification tailored to the residency patterns of the common bottlenose dolphin. We employ a Bayesian framework for our inference, discussing the appropriate choice of priors to mitigate label-switching and nonidentifiability issues, commonly associated with finite mixture models. We conduct a series of simulation experiments to illustrate the competitive advantage of our proposal over less specific alternatives. The proposed approach is applied to data collected on the common bottlenose dolphin population inhabiting the Tiber River estuary (Mediterranean Sea). Our results provide novel insights into this population's size and structure, shedding light on some of the ecological processes governing its dynamics. 相似文献
3.
4.
Andrew J. Campomizzi Zoé M. Lebrun-Southcott Christopher M. Lituma 《Journal of Field Ornithology》2020,91(3):313-329
Estimating the abundance and breeding success of territorial songbirds is challenging. Various types of surveys and analyses are available, but all receive some criticism in the literature, and most methods are rarely compared with results obtained using intensive monitoring efforts. We assessed the efficacy of transect and point-count surveys to estimate the abundance of male Bobolinks (Dolichonyx oryzivorus) and detect evidence of nesting and fledging by comparing the results of those surveys to results from more intensive monitoring (i.e., spot mapping and nest monitoring). We monitored 36 fields (254 ha) of late-harvest hay, restored grassland, and fallow fields in the Luther Marsh Wildlife Management Area and on four farms in southern Ontario, Canada, in 2018. Compared to the number of territories identified based on spot mapping (197), distance sampling analysis of transect survey data provided a more accurate estimate of the abundance of male Bobolinks (230, 95% CI: 187, 282) than N-mixture models of transect (668, 95% CI: 332, 1342) and point-count (337, 95% CI: 203, 559) data. Three visits to survey transects and five to point counts did not effectively detect evidence of Bobolink breeding (i.e., nesting or fledging) in fields compared to spot mapping and nest monitoring. Distance sampling analysis of transect data appears promising for estimating the number of Bobolink territories in an area, e.g., those impacted by conservation programs. If estimates of the number of nesting Bobolinks and frequency of fledging are of interest, spot mapping and nest monitoring could be implemented at a subset of sampled fields. Our results suggest that additional studies to evaluate model-based estimates of abundance with the best available information (e.g., from spot mapping of marked or unmarked populations and nest monitoring) would be useful to ensure that robust estimates are provided to support population estimates and conservation actions. 相似文献
5.
Brett J. Furnas Russ H. Landers Rhonda G. Paiste Benjamin N. Sacks 《The Journal of wildlife management》2020,84(5):979-988
Abundance of mule deer (Odocoileus hemionus) in western North America is often considered lower than desirable for hunting. Some coastal populations of Columbian black-tailed deer (O. h. columbianus) in California, USA, near urban development, however, are perceived as a nuisance and may be overabundant. To determine the density of a potential nuisance population in Marin County, California, we used a combination of fecal DNA surveys, camera stations, and 2 sources of ancillary data on wildlife observations. We estimated an average density of 18.3 deer/km2 (90% CI = 15.8–20.7) throughout Marin County during late summer and early fall, 2015 and 2016. Within the county, areas with intermediate human density (885 people/km2, 90% CI = 125–1,646) were associated with the highest deer densities (25–44/km2). Our estimate of average deer density was 1.7–6.1 times higher than published density estimates for deer from elsewhere in California and on the low end of densities reported for mule and white-tailed (O. virginianus) deer in regions where they routinely cause a nuisance to humans. High black-tailed deer densities in Marin County may be partially attributed to a paucity of large predators, but more investigation is warranted to evaluate the effects of a recent increase in coyotes (Canis latrans) on the deer population. Analyses of highway road kill rates and citizen science surveys suggest that the deer population in Marin County has been stable over the past 10 years. Our results demonstrate how robust estimation of deer density can inform human–wildlife conflict issues, not just managed hunting. © 2020 The Wildlife Society. 相似文献
6.
Stephanie S. Coster Adrienne I. Kovach Peter J. Pekins Andrew B. Cooper Andrew Timmins 《The Journal of wildlife management》2011,75(5):1128-1136
Abundance estimates for black bears (Ursus americanus) are important for effective management. Recently, DNA technology has resulted in widespread use of noninvasive, genetic capture–mark–recapture (CMR) approaches to estimate populations. Few studies have compared the genetic CMR methods to other estimation methods. We used genetic CMR to estimate the bear population at 2 study sites in northern New Hampshire (Pittsburg and Milan) in 2 consecutive years. We compared these estimates to those derived from traditional methods used by the New Hampshire Fish and Game Department (NHFG) using hunter harvest and mortality data. Density estimates produced with genetic CMR methods were similar both years and were comparable to those derived from traditional methods. In 2006, the estimated number of bears in Pittsburg was 79 (95% CI = 60–98) corresponding to a density of 15–24 (95% CI) bears/100 km2; the 2007 estimate was 83 (95% CI = 67–99; density = 16–24 bears/100 km2). In 2006, the estimated number of bears in Milan was 95 (95% CI = 74–117; density = 16–25 bears/100 km2); the 2007 estimate was 96 (95% CI = 77–114; density = 17–25 bears/100 km2). We found that genetic CMR methods were able to identify demographic variation at a local scale, including a strongly skewed sex ratio (2 M:1 F) in the Milan population. Genetic CMR is a useful tool for wildlife managers to monitor populations of local concern, where abundance or demographic characteristics may deviate from regional estimates. Future monitoring of the Milan population with genetic CMR is recommended to determine if the sex ratio bias continues, possibly warranting a change in local harvest regimes. © 2011 The Wildlife Society. 相似文献
7.
8.
Joshua H. Schmidt Kumi L. Rattenbury James P. Lawler Margaret C. Maccluskie 《The Journal of wildlife management》2012,76(2):317-327
Management of large mammal populations has often been based on aerial minimum count surveys that are uncorrected for incomplete detection and lack estimates of precision. These limitations can be particularly problematic for Dall's sheep (Ovis dalli dalli) due to the high cost of surveys and variation in detection probability across time and space. The limitations of these methods have been recognized for some time, but previously proposed alternatives for sheep surveys proved to be too costly and logistically unfeasible in most circumstances (Udevitz et al. 2006). We assessed the potential for a combination of distance sampling surveys and a hierarchical modeling approach to provide a more efficient means for estimating Dall's sheep abundance by conducting aerial contour transect surveys over all sheep habitat in Gates of the Arctic National Park and Preserve (GAAR), Alaska in 2009 and 2010. We estimated the population of Dall's sheep was 8,412 (95% CI: 6,517–11,090) and 10,072 (95% CI 8,081–12,520) in 2009 and 2010, respectively. Abundance within the Itkillik Preserve area within GAAR was 1,898 (95% CI: 1,421–2,578) and 1,854 (95% CI: 1,342–2,488) in 2009 and 2010, respectively. Estimates of lamb abundance in 2010 were more than double those of 2009 after correcting for detection bias related to group size, suggesting that the apparent estimate of lambs in the population may be biased in some years depending on the degree of aggregation. Overall, the contour transect surveys were feasible logistically, cost 70–80% less than minimum count surveys, and produced precise estimates of abundance, indicating that the application of these methods could be used effectively to increase the statistical rigor and spatial extent of Dall's sheep abundance surveys throughout Alaska. These methods could be used to improve the assessment of long-term trends in populations and productivity and provide valuable information for harvest management at both local and landscape scales at reduced costs in comparison to traditional minimum count surveys. © 2011 The Wildlife Society. 相似文献
9.
Téo Barracho;Scott A. Hatch;Jana Kotzerka;Stefan Garthe;Hannes A. Schraft;Shannon Whelan;Kyle H. Elliott; 《Ecology and evolution》2024,14(7):e11414
Life-history theory predicts that investment in reproduction should decrease survival (the ‘cost of reproduction’). It is often assumed that energy allocation drives such trade-offs, with limited energy available for both reproduction and survival. However, the underlying mechanisms remain poorly understood, maybe because survival costs of reproduction are only apparent when resources are limited. Here, we took advantage of a natural experiment created by fluctuating environmental conditions to compare energy expenditure of a seabird, the pelagic cormorant (Phalacrocorax pelagicus), between contrasting population-scale scenarios of survival costs of reproduction. We used multi-state capture–recapture modelling across 16 years to identify which breeding seasons induced high survival costs (survival ratebreeders < survival ratenon/failed breeders) and we concomitantly estimated energy expenditure of chick-rearing males using time-energy budget models across 4 years. Daily energy expenditure (DEE) of chick-rearing pelagic cormorants varied significantly among years. However, survival costs of reproduction were observed in only 1 year, and contrary to our expectations, variation in DEE was not associated with population-level survival costs. Similarly, at the individual level, DEE in 1 year did not predict the probability of being observed again at the colony in following years (apparent survival). Finally, DEE was independent of brood size and brood age, but older individuals tended to expend less energy than younger ones. Given the lack of an apparent energetic ‘cost of reproduction’, lower DEE in older birds could be due to improved efficiency rather than avoidance of costs in old birds. Although future studies should account for potential sex-specific energetic constraints by including data on female energy expenditure, we conclude that a direct link between the rate of energy expenditure during breeding and subsequent survival is unlikely in this system. 相似文献
10.
11.
The use of non-invasive genetic sampling to estimate population size in elusive or rare species is increasing. The data generated from this sampling differ from traditional mark-recapture data in that individuals may be captured multiple times within a session or there may only be a single sampling event. To accommodate this type of data, we develop a method, named capwire, based on a simple urn model containing individuals of two capture probabilities. The method is evaluated using simulations of an urn and of a more biologically realistic system where individuals occupy space, and display heterogeneous movement and DNA deposition patterns. We also analyse a small number of real data sets. The results indicate that when the data contain capture heterogeneity the method provides estimates with small bias and good coverage, along with high accuracy and precision. Performance is not as consistent when capture rates are homogeneous and when dealing with populations substantially larger than 100. For the few real data sets where N is approximately known, capwire's estimates are very good. We compare capwire's performance to commonly used rarefaction methods and to two heterogeneity estimators in program capture: Mh-Chao and Mh-jackknife. No method works best in all situations. While less precise, the Chao estimator is very robust. We also examine how large samples should be to achieve a given level of accuracy using capwire. We conclude that capwire provides an improved way to estimate N for some DNA-based data sets. 相似文献
12.
Dankmar Böhning 《Biometrical journal. Biometrische Zeitschrift》2023,65(2):2100343
One-inflation in zero-truncated count data has recently found considerable attention. There are currently two views in the literature. In the first approach, the untruncated model is considered as one-inflated whereas in the second approach the truncated model is viewed as one-inflated. Here, we show that both models have identical model spaces as well as identical maximum likelihoods. Consequences of population size estimation are illuminated, and the findings are illustrated at hand of two case studies. 相似文献
13.
Abstract: Status and trends of gopher tortoise (Gopherus polyphemus) populations are a critical information need for natural resource managers, researchers, and policy makers. Many tortoise populations are small and isolated, which can present challenges for deriving population estimates. Our objective was to compare abundance and density estimates for a small tortoise population derived using a total burrow count versus estimates obtained with line transect distance sampling (LTDS) using repeated surveys. We also compared results of the 2 survey methods using standard burrow-to-tortoise correction factors versus assessing occupancy of all burrows with a camera scope. In addition, we compared LTDS data obtained using a compass and measuring tape to define transects to those obtained using a Global Positioning System (GPS) and Personal Data Assistant (PDA) field computer to navigate transects. Line transect distance sampling with repeated surveys (both with a measuring tape and compass and with a GPS—PDA) yielded sufficient observations of tortoises to calculate population estimates. From 18% to 31% of burrows were occupied by tortoises as determined with the burrow camera. We found 25 burrows during the LTDS survey that we did not find in the total count survey, which demonstrated that the assumption of 100% detection for the total count was not met; hence, density or abundance measurements derived with this method were underestimates. We recommend using GPS—PDA technology, scoping all burrows detected, and using LTDS with repeated surveys to estimate abundance and density for small gopher tortoise populations. 相似文献
14.
The pooling robustness property of distance sampling results in unbiased abundance estimation even when sources of variation in detection probability are not modeled. However, this property cannot be relied upon to produce unbiased subpopulation abundance estimates when using a single pooled detection function that ignores subpopulations. We investigate by simulation the effect of differences in subpopulation detectability upon bias in subpopulation abundance estimates. We contrast subpopulation abundance estimates using a pooled detection function with estimates derived using a detection function model employing a subpopulation covariate. Using point transect survey data from a multispecies songbird study, species-specific abundance estimates are compared using pooled detection functions with and without a small number of adjustment terms, and a detection function with species as a covariate. With simulation, we demonstrate the bias of subpopulation abundance estimates when a pooled detection function is employed. The magnitude of the bias is positively related to the magnitude of disparity between the subpopulation detection functions. However, the abundance estimate for the entire population remains unbiased except when there is extreme heterogeneity in detection functions. Inclusion of a detection function model with a subpopulation covariate essentially removes the bias of the subpopulation abundance estimates. The analysis of the songbird point count surveys shows some bias in species-specific abundance estimates when a pooled detection function is used. Pooling robustness is a unique property of distance sampling, producing unbiased abundance estimates at the level of the study area even in the presence of large differences in detectability between subpopulations. In situations where subpopulation abundance estimates are required for data-poor subpopulations and where the subpopulations can be identified, we recommend the use of subpopulation as a covariate to reduce bias induced in subpopulation abundance estimates. 相似文献
15.
Daniel W. Linden David S. Green Elena V. Chelysheva Salim Mandela Mandere Stephanie M. Dloniak 《Population Ecology》2020,62(3):341-352
Population monitoring is key to wildlife conservation and management but is challenging at the spatial and temporal extents necessary for understanding changes. Noninvasive survey methods and spatial capture–recapture (SCR) models have revolutionized wildlife monitoring by providing the means to acquire data at large scales and the framework to generate spatially explicit predictions, respectively. Despite opportunities for improved monitoring, challenges can remain in the study design and model fitting phases of an SCR approach. Here, we used a search-encounter design with multi-session SCR models to collect spatially indexed photographs and estimate changes in density of cheetahs between 2005 and 2013–2016 in the Masai Mara National Reserve (MMNR) in Kenya. Our SCR models of cheetah encounters suggested little change in cheetah density from 2005 to 2013–2016, with some evidence that density fluctuated annually in the MMNR. The sampling period length (5 vs. 10 months) and timing (early, late, full year) over which spatial encounters were modeled did not alter inferences about density when sample sizes were adequate (>20 spatially distinct encounters). Our average density estimate of ~1.2 cheetahs/100 km2 is consistent with the impression that the MMNR provides important cheetah habitat in Africa. During most years, spatial distribution of vegetation greenness (proxy for ungulate habitat quality) accounted for important variation in encounter rates. The search-encounter design here could be applied to other regions for cheetah monitoring. While snapshot estimates of population size across time are useful for wildlife monitoring, open population models may better identify the mechanisms behind temporal changes. 相似文献
16.
Hettinga PN Arnason AN Manseau M Cross D Whaley K Wilson PJ 《The Journal of wildlife management》2012,76(6):1153-1164
A critical step in recovery efforts for endangered and threatened species is the monitoring of population demographic parameters. As part of these efforts, we evaluated the use of fecal-DNA based capture–recapture methods to estimate population sizes and population rate of change for the North Interlake woodland caribou herd (Rangifer tarandus caribou), Manitoba, Canada. This herd is part of the boreal population of woodland caribou, listed as threatened under the federal Species at Risk Act (2003) and the provincial Manitoba Endangered Species Act (2006). Between 2004 and 2009 (9 surveys), we collected 1,080 fecal samples and identified 180 unique genotypes (102 females and 78 males). We used a robust design survey plan with 2 surveys in most years and analysed the data with Program MARK to estimate encounter rates (p), apparent survival rates (φ), rates of population change (λ), and population sizes (N). We estimated these demographic parameters for males and females and for 2 genetic clusters within the North Interlake. The population size estimates were larger for the Lower than the Upper North Interlake area and the proportion of males was lower in the Lower (33%) than the Upper North Interlake (49%). Population rate of change for the entire North Interlake area (2005–2009) using the robust design Pradel model was significantly <1.0 (λ = 0.90, 95% CI: 0.82–0.99) and varied between sex and area with the highest being for males in Lower North Interlake (λ = 0.98, 95% CI: 0.83–1.13) and the lowest being for females in Upper North Interlake (λ = 0.83, 95% CI: 0.69–0.97). The additivity of λ between sex and area is supported on the log scale and translates into males having a λ that is 0.09 greater than females and independent of sex, Lower North Interlake having a λ that is 0.06 greater than Upper North Interlake. Population estimates paralleled these declining trends, which correspond to trends observed in other fragmented populations of woodland caribou along the southern part of their range. The results of this study clearly demonstrate the applicability and success of non-invasive genetic sampling in monitoring populations of woodland caribou. © 2012 The Wildlife Society. 相似文献
17.
Davide Di Cecco Marco Di Zio Brunero Liseo 《Biometrical journal. Biometrische Zeitschrift》2020,62(4):957-969
We propose a method for estimating the size of a population in a multiple record system in the presence of missing data. The method is based on a latent class model where the parameters and the latent structure are estimated using a Gibbs sampler. The proposed approach is illustrated through the analysis of a data set already known in the literature, which consists of five registrations of neural tube defects. 相似文献
18.
ERIN R. ZYLSTRA ROBERT J. STEIDL DON E. SWANN 《The Journal of wildlife management》2010,74(6):1311-1318
Abstract: Effective conservation requires strategies to monitor populations efficiently, which can be especially difficult for rare or elusive species where field surveys require high effort and considerable cost. Populations of many reptiles, including Sonoran desert tortoises (Gopherus agassizii), are challenging to monitor effectively because they are cryptic, they occur at low densities, and their activity is limited both seasonally and daily. We compared efficiency and statistical power of 2 survey methods appropriate for tortoises and other rare vertebrates, line-transect distance sampling and site occupancy. In 2005 and 2006 combined, we surveyed 120 1-km transects to estimate density and 40 3-ha plots 5 times each to estimate occupancy of Sonoran desert tortoises in 2 mountain ranges in southern Arizona, USA. For both mountain ranges combined, we estimated density to be 0.30 adult tortoises/ha (95% CI = 0.17–0.43) and occupancy to be 0.72 (95% CI = 0.56–0.89). For the sampling designs we evaluated, monitoring efforts based on occupancy were 8–36% more efficient than those based on density, when contrasting only survey effort, and 17–30% more efficient when contrasting total effort (surveying, hiking to and from survey locations, and radiotracking). Occupancy had greater statistical power to detect annual declines in the proportion of area occupied than did distance sampling to detect annual declines in density. For example, we estimated that power to detect a 5% annual decline with 10 years of annual sampling was 0.92 (95% CI = 0.75–0.98) for occupancy and 0.43 (95% CI = 0.35–0.52) for distance sampling. Although all sampling methods have limitations, occupancy estimation offers a promising alternative for monitoring populations of rare vertebrates, including tortoises in the Sonoran Desert. 相似文献
19.
If animals are independently detected during surveys, many methods exist for estimating animal abundance despite detection probabilities <1. Common estimators include double‐observer models, distance sampling models and combined double‐observer and distance sampling models (known as mark‐recapture‐distance‐sampling models; MRDS). When animals reside in groups, however, the assumption of independent detection is violated. In this case, the standard approach is to account for imperfect detection of groups, while assuming that individuals within groups are detected perfectly. However, this assumption is often unsupported. We introduce an abundance estimator for grouped animals when detection of groups is imperfect and group size may be under‐counted, but not over‐counted. The estimator combines an MRDS model with an N‐mixture model to account for imperfect detection of individuals. The new MRDS‐Nmix model requires the same data as an MRDS model (independent detection histories, an estimate of distance to transect, and an estimate of group size), plus a second estimate of group size provided by the second observer. We extend the model to situations in which detection of individuals within groups declines with distance. We simulated 12 data sets and used Bayesian methods to compare the performance of the new MRDS‐Nmix model to an MRDS model. Abundance estimates generated by the MRDS‐Nmix model exhibited minimal bias and nominal coverage levels. In contrast, MRDS abundance estimates were biased low and exhibited poor coverage. Many species of conservation interest reside in groups and could benefit from an estimator that better accounts for imperfect detection. Furthermore, the ability to relax the assumption of perfect detection of individuals within detected groups may allow surveyors to re‐allocate resources toward detection of new groups instead of extensive surveys of known groups. We believe the proposed estimator is feasible because the only additional field data required are a second estimate of group size. 相似文献
20.
Abundance estimation is frequently an objective of conservation and monitoring initiatives for threatened and other managed populations. While abundance estimation via capture–mark–recapture or spatially explicit capture–recapture is now common, such approaches are logistically challenging and expensive for species such as boreal caribou (Rangifer tarandus), which inhabit remote regions, are widely dispersed, and exist at low densities. Fortunately, the recently developed ‘close-kin mark–recapture’ (CKMR) framework, which uses the number of kin pairs obtained within a sample to generate an abundance estimate, eliminates the need for multiple sampling events. As a result, some caribou managers are interested in using this method to generate an abundance estimate from a single, non-invasive sampling event for caribou populations. We conducted a simulation study using realistic boreal caribou demographic rates and population sizes to assess how population size and the proportion of the population surveyed impact the accuracy and precision of single-survey CKMR-based abundance estimates. Our results indicated that abundance estimates were biased and highly imprecise when very small proportions of the population were sampled, regardless of the population size. However, the larger the population size, the smaller the required proportion of the population surveyed to generate both accurate and reasonably precise estimates. Additionally, we also present a case study in which we used the CKMR framework to generate annual female abundance estimates for a small caribou population in Jasper National Park, Alberta, Canada, from 2006 to 2015 and compared them to existing published capture–mark–recapture-based estimates. Both the accuracy and precision of the annual CKMR-based abundance estimates varied across years and were sensitive to the proportion of pairwise kinship comparisons which yielded a mother–offspring pair. Taken together, our study demonstrates that it is possible to generate CKMR-based abundance estimates from a single sampling event for small caribou populations, so long as a sufficient sampling intensity can be achieved. 相似文献