首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This study was undertaken to examine the mechanism by which metabolic inhibition reduces amino acid active transport in ehrlich ascites tumor cells. At 37 degrees C the metabolic inhibitor combination 0.1 mM 2,4-dinitrophenol (DNP) + 10 mM 2- deoxy-D-glucose (DOG) reduced the cell ATP concentration to 0.10- 0.15 mM in less than 5 min. This inhibition was associated with a 20.6 percent +/- 6.4 percent (SD) decrease in the initial influx of α-aminoisobutyric acid (AIB), and a two- to fourfold increase in the unidirectional efflux. These effects could be dissociated from changes in cell Na(+) or K(+) concentrations. Cells incubated to the steady state in 1.0-1.5 mM AIB showed an increased steady-state flux in the presence of DNP + DOG. Steady- state fluxes were consistent with trans-inhibition of AIB influx and trans-stimulation of efflux in control cells, but trans- stimulation of both fluxes in inhibited cells. In spite of the reduction of the cell ATP concentration to less than 0.15 mM and greatly reduced transmembrane concentration gradients of Na(+) and K(+), cells incubated to the steady state in the presence of the inhibitors still established an AIB distribution ration 13.8 +/- 2.6. The results are interpreted to indicate that a component of the reduction of AIB transport produced by metabolic inhibition is attributable to other actions in addition to the reduction of cation concentration gradients. Reduction of cell ATP alone is not responsible for the effects of metabolic inhibition, and both the transmembrane voltage and direct coupling to substrate oxidation via plasma-membrane-bound enzymes must be considered as possible energy sources for amino acid active transport.  相似文献   

2.
Summary Interaction of positively charged liposomes with Ehrlich ascites tumor cells increases the bidirectional transmembrane fluxes of the anionic folic acid analog, methotrexate. Negative liposomes reduce methotrexate influx. Stimulation of methotrexate influx by positively charged liposomes is time and concentration dependent, requiring at least a 5-min incubation with 2.5mm phosphatidylcholine containing 20% stearylamine for maximum effect. Stimulation is not appreciably reversed by washing the cells. Similar increases are observed for influx and efflux so that there is no change in the steady-state methotrexate electrochemical-potential difference across the cell membrane. The increase in influx appears to be a stimulation of the carrier-mediated transport process for methotrexate since both control and stimulated influx are abolished by the competitive inhibitor, 5-formyltetrahydrofolate or the sulfhydryl group inhibitor,p-chloromercuriphenylsulfonic acid and the Q10 of the system remains unchanged. Influx of 5-methyltetrahydrofolate, which shares the same transport carrier as methotrexate, is also stimulated. However, the transport of folic acid, which is structurally similar to methotrexate but does not utilize the carrier, is unaffected. The kinetic change induced by positively charged liposomes is an increase in theV ma in , while theK t in remains unchanged. Trans-stimulation of methotrexate influx by 5-formyltetrahydrofolate occurs to the same extent in the presence or absence of positively charged liposomes. The liposomes have no apparent effect on the intracellular water, the extracellular space, or the chloride distribution ratio. The data suggest that interaction of positively charged liposomes with Ehrlich ascites tumor cells accelerates the rate of transposition of the membrane carrier system for methotrexate, altering the kinetics of transport without a change in transport thermodynamics.  相似文献   

3.
4.
A unique interaction between the folate analog, methotrexate (4-amino-4-deoxy-10-methylpteroylglutamic acid), and the naturally occurring folates in L1210 leukemia and Ehrlich ascites tumor cells provides a useful model for the study of heteroexchange diffusion. The presence of intracellular binding sites with a high affinity for methotrexate but a low affinity for folic acid and its tetrahydrofolate derivatives permit the measurement of true unidirectional influx rates for methotrexate and assure that the trans-stimulation of methotrexate uptake by the intracellular presence of the other folates is due solely to a primary augmentation of this carrier influx mechanism. Further, since free methotrexate does not appear prior to saturation of the binding sites, the reaction between the folates and carrier at the inner cell membrane is undisturbed by methotrexate released from carrier as the complex enters the cell during heteroexchange, facilitating quantitation of the kinetic alterations which occur for methotrexate influx during trans-stimulation.  相似文献   

5.
Using the double thymidine block technique. Ehrlich ascites tumor cells (ELD) carried in continuous spinner culture have been synchronized. Simultaneous monitoring of 3H-thymidine incorporation, cell number and mitotic index yielded a cell cycle time of approximately 13.5 hours. This is composed of an S period of 3-4 hours. G2 of 6-8 hours and M of 1-2 hours. No appreciable G1 is present. Ehrlich cells synchronized in this manner were used to investigate the characteristics of two neutral amino acid transport systems during progression through the cell cycle. Unidirectional influx via the Na-dependent system A was studied using C14-alpha-aminoisobutyrate (AIB) as substrate. The Na-independent system L was monitored using 3H-leucine and 14C-cycloleucine as substrates. Transport by the A system was minimal in M and early S. It underwent a three-fold increase during late S and early G2. In mid G2 the transport via this system rapidly dropped and remained low again through M and early S. The intracellular/extracellular ratios of AIB indicate that the system is actively transporting AIB thoughout the cell cycle. The minimum ratios of approximately 3 were achieved during early M and the maximum ratios of approximately 9 were achieved in late S, early G2. The uptake of leucine and cycloleucine by the L system was quite different during the cell cycle. Maximal unidirectional influx by this system occurred during early and mid S period. Upon progression into G2 the transport rate dropped and remained reduced throughout M. Intracellular/extracellular ratios of leucine or cycloleucine were near unity at the peak of the transport activity (early S) and dropped to values of 0.5 to 0.6 throughout the remainder of the cycle. This result indicates that inward transport by the L system is, for the most part, non-active in growing cells.  相似文献   

6.
A model analysis of the process of carrier mediated membrane transport is presented, wherein the carrier is present in two forms of differing affinity for substrate. The two forms of carrier undergo interconversion by asymmetric metabolic reactions on each side of the membrane. From this model system expressions are derived for the steady-state distribution ratio for substrate, for the unidirectional fluxes of substrate and hence for the initial velocity of uptake of substrate, and for the effect of preloading cells upon the initial velocity of uptake of labeled substrate. These expressions are applied to published data for glycine transport in Ehrlich ascites tumor cells to obtain numerical values for the parameters of a concentrative membrane carrier system. Concentrative uptake is shown to be consequent to the differing affinities of the two forms of carrier. When the affinities of the two forms are equal, equilibrative uptake occurs. The model analysis is applied to the phenomena of metabolic and competitive inhibition.  相似文献   

7.
Summary Interaction of positively (phosphatidylcholine/stearylamine 51) or negatively (phosphatidylcholine/stearic acid 51) charged liposomes with Ehrlich ascites tumor cells for 1–5 min increases or decreases, respectively, the bidirectional fluxes of the folic acid analog, methotrexate. These effects on influx and efflux appear to be symmetrical since the liposomes do not change the intracellular level of methotrexate at the steady state. Influx kinetics show that these alterations result from an increase or decrease in theV max with no change in theK m in . These effects appear to be specific for the methotrexate-tetrahydrofolate carrier system since the transport of other compounds which utilize this carrier, aminopterin, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate, is affected similarly to methotrexate, whereas, the transport of folic acid, a compound similar in structure and charge but not significantly transported by this carrier is unaffected by liposomes. Once cells are exposed to charged liposomes, the effects on methotrexate transport cannot be reversed by washing the cells free of the extracellular liposomes. If, however, cells are exposed to liposomes of one charge, washed and then exposed to liposomes of the opposite charge, methotrexate influx is reversed to control rates. The effects of charged liposomes on methotrexate influx were not abolished by treating the cells with neuraminidase, metabolic inhibitors or lowering the temperature to 4°C. Studies on the uptake of [14C] liposomes show that these effects are not proportional to the total amount of lipid associated with the cell but result from an initial rapid liposome-cell association that is not dependent on temperature or energy metabolism nor related to cell surface charge.  相似文献   

8.
Anion/anion exchange in human neutrophils   总被引:5,自引:2,他引:3       下载免费PDF全文
Of the total one-way chloride fluxes (approximately 1.4 meq/liter cell water X min) in steady state human polymorphonuclear leukocytes bathed in 148 mM Cl media, approximately 70% behaves as self-exchange mediated by a nonselective anion carrier that is not inhibited by stilbene disulfonates. Five properties of this carrier-mediated exchange were investigated: substrate saturation is seen with respect to 36Cl influx as a function of the external Cl concentration [for normal-Cl cells, the apparent Km(Cl) is approximately 22 mM when Cl replaces para-amino- hippurate (PAH) and approximately 5 mM when Cl replaces glucuronate], and with respect to 36Cl efflux as a function of the concentration of internal Cl replacing PAH [apparent Km(Cl) congruent to 35 mM for cells bathed in 148 mM Cl]; there is trans stimulation of 36Cl influx by internal Cl (replacing PAH) with an apparent Km(Cl) congruent to 35 mM, and of 36Cl efflux by external Cl with an apparent Km(Cl) congruent to 22 mM (Cl replacing PAH) or approximately 5 mM (Cl replacing glucuronate); there is substrate competition between Cl and PAH, but the carrier appears devoid of affinity for glucuronate; influxes and effluxes mediated by the carrier are subject to competitive inhibition by extracellular alpha-cyano-4-hydroxycinnamate (CHC), with an apparent Ki congruent to 9 mM in Cl medium or approximately 1 mM in PAH medium (transport of the inhibitor itself is very slow); and internal Cl and external Cl or PAH undergo 1:1 countertransport, which is CHC sensitive. A simple equilibrium-competition model is proposed that accounts for all the extracellular ligand interactions presented for normal-Cl cells. Least-squares values of the carrier's true Michaelis constants for extracellular Cl, PAH, and CHC are 5.03 +/- 0.83, 50.3 +/- 14.9, and 0.29 +/- 0.09 mM, respectively.  相似文献   

9.
Nonlabeled and tritiated stereoisomers of 5-methyltetrahydrofolate were prepared and were both shown to be substrates for the high affinity H4 folate cofactor membrane transport carrier in Ehrlich ascites tumor cells. Both the enzymically active form and the isomer having the opposite configuration at carbon 6 inhibited the influx of enzymically synthesized (+)-5-methyltetrahydrofolate, methotrexate, and aminopterin. When added to the media of cells preloaded with methotrexate, both isomers stimulated a net efflux of the antifolate from the cell. Influx of the natural and unnatural isomers followed Michaelis-Menten kinetics with comparable Km values. Each isomer competitively inhibited influx of the other.  相似文献   

10.
1.
1. The net uptake of α-aminoisobutyric acid (AIB) in Ehrlich ascites tumor cells has been studied under a variety of transmembrane concentration gradients of Na+, K+ and AIB itself.  相似文献   

11.
Influx of alpha-aminoisobutyric acid (AIB) and gamma-aminobutyric acid (GABA) by mouse cerebrum slices incubated with L-lactate or a mixture of succinate, L-malate, and pyruvate (SMP) as the energy source follows the phenomenological rate equation for influx from pyruvate and glucose media: v = Vmax/(1 + Kt/S) + kuS, where v is rate and S is concentration of amino acid. There are two kinetically distinct, parallel components for concentrative uptake, one saturable, and one unsaturable. Rates are less with lactate than with pyruvate and still less with SMP (only GABA was studied), disproving the hypotheses that lower rates with pyruvate compared to glucose are due to an abnormal redox state in the tissue or to a Krebs cycle unbalanced by input at only one point. The carriers for AIB and GABA are qualitatively different. In lactate medium the capacity of each AIB carrier is unchanged but its affinity is reduced to one-third. In lactate and SMP media, the capacity of the saturable GABA carrier is diminished although its affinity is increased. Rates from these media with added glucose or a glucose analog confirm that amino acid and glucose fluxes are not coupled.  相似文献   

12.
The mechanism by which SO4(2-) is transported across the plasma membrane of isolated human neutrophils was investigated. Unlike the situation in erythrocytes, SO4(2-) and other divalent anions are not substrates for the principal Cl-/HCO3- exchange system in these cells. At an extracellular concentration of 2 mM, total one-way 35SO4(2-) influx and efflux in steady-state cells amounted to approximately 17 mumol/liter of cell water per min. The intracellular SO4(2-) content was approximately 1 mM, approximately 25-fold higher than the passive distribution level. Internal Cl- trans stimulated 35SO4(2-) influx. Conversely, 35SO4(2-) efflux was trans stimulated by external Cl- (Km approximately 25 mM) and by external SO4(2-) (Km approximately 14 mM), implying the presence of a SO4(2-)/Cl- countertransport mechanism. The exchange is noncompetitively inhibited by 4-acetamido-4'-isothiocyanostilbene-2,2' -disulfonate (SITS) (Ki approximately 50 microM) and competitively blocked by alpha-cyano-4-hydroxycinnamate (Ki approximately 230 microM) and by ethacrynate (Ki approximately 7 microM); furosemide and probenecid also suppressed activity. The carrier exhibits broad specificity for a variety of monovalent (NO3- approximately Cl- greater than Br- greater than formate- greater than I- approximately p-aminohippurate-) and divalent WO4(2-) greater than oxalate2- greater than SO4(2-) greater than MoO4(2-) greater than SeO4(2-) greater than AsO4(2-) anions. There was little, if any, affinity for HCO3-, phosphate, or glucuronate. The influx of SO4(2-) is accompanied by an equivalent cotransport of H+, the ion pair H+ + SO4(2-) being transported together in exchange for Cl-, thereby preserving electroneutrality. These findings indicate the existence of a separate SO4(2-)/Cl- exchange carrier that is distinct from the neutrophil's Cl-/HCO3- exchanger. The SO4(2-) carrier shares several properties in common with the classical inorganic anion exchange mechanism of erythrocytes and with other SO4(2-) transport systems in renal and intestinal epithelia, Ehrlich ascites tumor cells, and astroglia.  相似文献   

13.
The effects of H+ on the kinetics of α-aminoisobutyric acid (AIB) influx in Ehrlich ascites tumor cells have been investigated at different external Na+ concentrations. Elevation of [H+] in the presence of both high (154 mEq/l) and low (10 mEq/l) external Na+ leads to decreases in the maximum influx (J) and increases in the apparent Michaleis-Menten constant (K) for influx of AIB. In the virtual absence of external Na+ (0.96 ± 0.04 mEq/l), alterations in [H+] are without measurable effect on AIB flux. Furthermore, addition of AIB (10 mM) to cell suspensions (pH 5.90) stimulates H+ uptake by the cells in either the presence or absence of Na+. The data are consistent with two kinetic models for Na+-dependent amino acid transport: an order bireactant (Na+-binding necessary before AIB binding) system or a random bireactant system. Both models require that H+ serve as an alternative substrate for Na+. The consistency of the models was tested by fit to data from the present study (not used to evaluate the kinetic parameters) and by prediction of the pH dependence of Na+-dependent amino acid transport compared to earlier studies.  相似文献   

14.
The uptake of various amino acids into Streptomyces hydrogenans grown in chemostatically and turbidostatically controlled steady state cultures has been investigated. A close correlation between transport capacity and the growth rates of the cells was found. As shown by kinetic analysis, the increased transport is due to elevated maximum uptake rates, the apparent Michaelis constants remaining unchanged. Analysis of the unidirectional fluxes of cycloleucine revealed that not only the influx is raised as the growth rate is increased but also the efflux. Hence, the conclusion is drawn that the growth-rate dependent modulation of transport capacity is, at least, partially due to the variation of the concentration of active transport components. Since the cells were grown in the absence of external amino acids the results suggest that amino acid transport into S. hydrogenans is under the control of endogenous effectors.List of Abbreviations AIB 2-aminoisobutyric acid - Cycloleucine 1-aminocyclopentane-1-carboxylic acid  相似文献   

15.
A regulatory function of the cell membrane in controlling the cytoplasmic level of Pi has been proposed, and in Ehrlich ascites tumor cells an active influx of primary phosphate has been reported in the literature. In the present study, Ehrlich cells were incubated at 1.5--50 mM extracellular Pi at pH 7.4 (Pi mainly secondary phosphate) and at pH 6.0 (mainly primary phosphate), and the measured cell Pi was compared with the value expected from a passive distribution of Pi. At a low extracellular Pi concentration the cell Pi was 3--6 mumol/g or even more. It is suggested that a major part of this cell Pi can be accounted for by enzymic release of Pi during the sampling procedure. If this interpretation is correct, the present results show that both ionic species of Pi are in electrochemical equilibrium across the cell membrane at steady state. Moreover, in vivo the concentration of free Pi in the cytosol will presumably be maintained at a steady-state level of about 0.4 mM, one order of magnitude below the directly measured values. This implies that the ratio [ATP]/[ADP][Pi] which is important in the regulation of energy metabolism, is higher than reported in the literature.  相似文献   

16.
Neutral amino acid transport is largely unexplored in astrocytes, although a role for these cells in blood-brain barrier function is suggested by their close apposition to cerebrovascular endothelium. This study examined the uptake into mouse astrocyte cultures of alpha-aminoisobutyric acid (AIB), a synthetic model substrate for Na+-dependent system A transport. Na+-dependent uptake of AIB was characteristic of system A in its pH sensitivity, kinetic properties, regulatory control, and pattern of analog inhibition. The rate of system A transport declined markedly with increasing age of the astrocyte cultures. There was an unexpectedly active Na+-independent component of AIB uptake that declined less markedly than system A transport as culture age increased. Although the saturability of the Na+-independent component and its pattern of analog inhibition were consistent with system L transport, the following properties deviated: (1) virtually complete inhibition of Na+-independent AIB uptake by characteristic L system substrates, suggesting unusually high affinity of the transporter; (2) apparent absence of trans-stimulation of AIB influx; (3) unusually concentrative uptake at steady state (the estimated distribution ratio for 0.2 mM AIB was 55); and (4) susceptibility to inhibition by N-ethylmaleimide. Direct study of the uptake of system L substrates in astrocytes is needed to confirm the present indications of high affinity and concentrative Na+-independent transport.  相似文献   

17.
Steady-state fluxes of 86Rb+ (as a tracer for K+) were measured in Chinese hamster ovary cells (CHO-K1) and a mutant (CR1) defective in the regulation of cholesterol biosynthesis; the membrane cholesterol content of this mutant was varied by growing it on a range of cholesterol supplements to lipid-free medium (Sinensky, M. (1978) Proc. Natl. Acad. Sci. U.S. 75, 1247--1249). Analogous to previous findings in ascites tumor cells, 86Rb+ influx in the parent strain was differentiated into a ouabain-inhibitable 'pump' flux, furosemide-sensitive, chloride-dependent exchange diffusion, and a residual 'leak' flux. On the basis of this flux characterization, 86Rb+ pump and leak fluxes were measured in the mutant as a function of membrane cholesterol content. Pump and leak fluxes, when expressed per ml cell water, were independent of the cholesterol content of the mutant. Moreover, 86Rb+ fluxes in the mutant were equal to those in the parent strain. Our data imply that the flux behavior of K+ in the steady state is independent of the ordering of membrane lipid acyl chains.  相似文献   

18.
Chloride content and fluxes were measured in isolated resting human peripheral polymorphonuclear leukocytes. The intracellular Cl concentration of cells kept at 37 degrees C in 148 mM Cl media was approximately 80 meq/liter cell water, fourfold higher than expected for passive distribution at the cell's estimated membrane potential (approximately -53 mV). All intracellular Cl was rapidly exchangeable with external 36Cl. Cells lost Cl exponentially into Cl-free media, and reaccumulated it when Cl was restored to the bath; this reuptake was dependent on metabolism. One-way 36Cl fluxes in steady state cells were approximately 1.4 meq/liter X min. The bulk (approximately 70%) of these represented electrically silent Cl/Cl exchange mediated by a carrier insensitive to disulfonic stilbenes but blocked by the anion carrier inhibitor alpha-cyano-4-hydroxycinnamate (CHC). The remaining fluxes were characterized in some detail. About 20% of 36Cl influx behaved as active transport: it moved thermodynamically uphill and was absent in cells treated with 2-deoxy-D-glucose, displayed Michaelis-Menten kinetics with Km(Cl) congruent to 5 mM, Vmax congruent to 0.25 meq/liter X min, and was inhibited by CHC (Ki congruent to 1.7 mM), ethacrynate (Ki congruent to 50 microM), and furosemide (Ki congruent to 50 microM). About 30% of Cl efflux and approximately 8% of Cl influx behaved as electrodiffusion through a low-permeability pathway (PCl congruent to 4 X 10(-9) cm/s; gCl congruent to 1 microsecond/cm2; PK/PNa/PCl congruent to to 10:1:1); these fluxes were linear with concentration and strongly voltage sensitive. The putative Cl channel does not appear to be voltage gated, and gives evidence of single filing.  相似文献   

19.
A perifusion system was designed in order to study glucose and glutamine metabolism by freshly harvested Ehrlich ascites tumour cells in steady state conditions. Cells were perifused in the presence of 5 mM glucose, 0.5 mM glutamine or 5 mM glucose and 0.5 mM glutamine. The results in steady state reveal that both substrates glucose and glutamine are continuously wasted by tumour cells, excreting two moles of lactate per mol of glucose and one mol of glutamate and ammonia per mol of glutamine consumed into the medium. Glutamine consumption in the presence of glucose was higher than with glutamine alone.  相似文献   

20.
The epipodophyllotoxin glucopyranosides have previously been shown to interact with membrane lipids and to alter the activity of several lipid-embedded membrane proteins. To determine if these agents are acting as general membrane perturbants, we have further examined their effects on membrane processes in Ehrlich ascites tumor cells. [3H]VM-26 and [3H]VP-16 were taken up rapidly and concentrated within the cells in proportion to their lipophilicity. Neither agent was found to have any significant effect on the influx of L-[3H]leucine or alpha-[3H]aminoisobutyric acid. Likewise, these drugs had no significant effects on the hexose transporter. The nucleoside transporter, which is structurally and functionally similar to the hexose transporter, was dramatically affected, however. VM-26 was a non-competitive inhibitor of equilibrium-exchange influx of cytosine arabinoside in Ehrlich cells with a Ki of 15 microM. Equilibrium-exchange influx increased with temperature in control cells (Q10 = 2) but not in VM-26-treated cells; thus, VM-26 was a more potent inhibitor at higher temperatures. VM-26 also significantly reduced zero-trans influx in Ehrlich, P388, L5178Y, and ML-1 cells, and these effects were immediate in onset. VM-26 inhibited high-affinity binding of the nucleoside transport inhibitor nitrobenzylmercaptopurine riboside (NBMPR), but VM-26 enhanced non-specific NBMPR binding to Ehrlich cells. The apparent specificity of the epipodophyllotoxins for the nucleoside transporter is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号