首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Where is the root of the universal tree of life?   总被引:11,自引:0,他引:11  
The currently accepted universal tree of life based on molecular phylogenies is characterised by a prokaryotic root and the sisterhood of archaea and eukaryotes. The recent discovery that each domain (bacteria, archaea, and eucarya) represents a mosaic of the two others in terms of its gene content has suggested various alternatives in which eukaryotes were derived from the merging of bacteria and archaea. In all these scenarios, life evolved from simple prokaryotes to complex eukaryotes. We argue here that these models are biased by overconfidence in molecular phylogenies and prejudices regarding the primitive nature of prokaryotes. We propose instead a universal tree of life with the root in the eukaryotic branch and suggest that many prokaryotic features of the information processing mechanisms originated by simplification through gene loss and non-orthologous displacement.  相似文献   

2.
内体分拣转运复合体(ESCRT,endosomal sorting complex required for transport)曾被认为是真核生物特有的系统,涉及膜重塑、泛素化蛋白质分拣等重要细胞生命过程。近年的研究显示,TACK(包括ThaumarchaeotaAigarchaeotaCrenarchaeotaKorarchaeota门)古菌超门中存在着一类与分泌膜囊泡、古菌病毒出胞以及细胞分裂过程等膜重塑过程相关的细胞分裂(Cdv,cell division)系统,该系统中的CdvB和CdvC是真核生物ESCRT-III和Vps4的同源蛋白,提示真核生物ESCRT系统可能起源自古菌。然而,由于TACK古菌中缺少真核生物ESCRT系统的其他关键成分,这一假设仍有争议。最近发现的阿斯加德(Asgard)古菌是一类被认为与真核生物最近缘的古菌,其基因组具有较完整的ESCRT相关蛋白的编码基因,提示真核生物的ESCRT很可能起源于阿斯加德古菌。本文首先简要介绍真核生物ESCRT系统的组成及生物学功能,然后分别总结TACK古菌的Cdv系统和阿斯加德古菌的ESCRT系统的研究进展,重点讨论它们的组成及生物学功能,为进一步了解古菌ESCRT系统与真核生物起源的关系提供参考。  相似文献   

3.
Low-molecular weight RNA (LMW RNA) analysis using staircase electrophoresis was performed for several species of eukaryotic and prokaryotic microorganisms. According to our results, the LMW RNA profiles of archaea and bacteria contain three zones: 5S RNA, class 1 tRNA and class 2 tRNA. In fungi an additional band is included in the LMW RNA profiles, which correspond to the 5.8S RNA. In archaea and bacteria we found that the 5S rRNA zone is characteristic for each genus and the tRNA profile is characteristic for each species. In eukaryotes the combined 5.8S and 5S rRNA zones are characteristic for each genus and, as in prokaryotes, tRNA profiles are characteristic for each species. Therefore, stable low molecular weight RNA, separated by staircase electrophoresis, can be considered a molecular signature for both prokaryotic and eukaryotic microorganisms. Analysis of the data obtained and construction of the corresponding dendrograms afforded relationships between genera and species; these were essentially the same as those obtained with 16S rRNA sequencing (in prokaryotes) and 18S rRNA sequencing (in eukaryotes).  相似文献   

4.
Xie Q  Wang Y  Lin J  Qin Y  Wang Y  Bu W 《PloS one》2012,7(1):e29468
In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been documented. Through comparing 507 taxa of 16S-18S rDNA and 347 taxa of 23S-28S rDNA, we found that archaea and eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase centre (PTC) of the 23S-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug resistance of ribosomes.  相似文献   

5.
The set of conserved eukaryotic protein-coding genes includes distinct subsets one of which appears to be most closely related to and, by inference, derived from archaea, whereas another one appears to be of bacterial, possibly, endosymbiotic origin. The "archaeal" genes of eukaryotes, primarily, encode components of information-processing systems, whereas the "bacterial" genes are predominantly operational. The precise nature of the archaeo-eukaryotic relationship remains uncertain, and it has been variously argued that eukaryotic informational genes evolved from the homologous genes of Euryarchaeota or Crenarchaeota (the major branches of extant archaea) or that the origin of eukaryotes lies outside the known diversity of archaea. We describe a comprehensive set of 355 eukaryotic genes of apparent archaeal origin identified through ortholog detection and phylogenetic analysis. Phylogenetic hypothesis testing using constrained trees, combined with a systematic search for shared derived characters in the form of homologous inserts in conserved proteins, indicate that, for the majority of these genes, the preferred tree topology is one with the eukaryotic branch placed outside the extant diversity of archaea although small subsets of genes show crenarchaeal and euryarchaeal affinities. Thus, the archaeal genes in eukaryotes appear to descend from a distinct, ancient, and otherwise uncharacterized archaeal lineage that acquired some euryarchaeal and crenarchaeal genes via early horizontal gene transfer.  相似文献   

6.
For decades, archaea were misclassified as bacteria because of their prokaryotic morphology. Molecular phylogeny eventually revealed that archaea, like bacteria and eukaryotes, are a fundamentally distinct domain of life. Genome analyses have confirmed that archaea share many features with eukaryotes, particularly in information processing, and therefore can serve as streamlined models for understanding eukaryotic biology. Biochemists and structural biologists have embraced the study of archaea but geneticists have been more wary, despite the fact that genetic techniques for archaea are quite sophisticated. It is time for geneticists to start asking fundamental questions about our distant relatives.  相似文献   

7.
Eukaryotes and archaea both possess multiple genes coding for family B DNA polymerases. In animals and fungi, three family B DNA polymerases, alpha, delta, and epsilon, are responsible for replication of nuclear DNA. We used a PCR-based approach to amplify and sequence phylogenetically conserved regions of these three DNA polymerases from Giardia intestinalis and Trichomonas vaginalis, representatives of early-diverging eukaryotic lineages. Phylogenetic analysis of eukaryotic and archaeal paralogs suggests that the gene duplications that gave rise to the three replicative paralogs occurred before the divergence of the earliest eukaryotic lineages, and that all eukaryotes are likely to possess these paralogs. One eukaryotic paralog, epsilon, consistently branches within archaeal sequences to the exclusion of other eukaryotic paralogs, suggesting that an epsilon-like family B DNA polymerase was ancestral to both archaea and eukaryotes. Because crenarchaeote and euryarchaeote paralogs do not form monophyletic groups in phylogenetic analysis, it is possible that archaeal family B paralogs themselves evolved by a series of gene duplications independent of the gene duplications that gave rise to eukaryotic paralogs.   相似文献   

8.
Information processing pathways such as DNA replication are conserved in eukaryotes and archaea and are significantly different from those found in bacteria. Single-stranded DNA-binding (SSB) proteins (or replication protein A, RPA, in eukaryotes) play a central role in many of these pathways. However, whilst euryarchaea have a eukaryotic-type RPA homologue, crenarchaeal SSB proteins appear much more similar to the bacterial proteins, with a single OB fold for DNA binding and a flexible C-terminal tail that is implicated in protein-protein interactions. We have determined the crystal structure of the SSB protein from the crenarchaeote Sulfolobus solfataricus to 1.26 A. The structure shows a striking and unexpected similarity to the DNA-binding domains of human RPA, providing confirmation of the close relationship between archaea and eukaryotes. The high resolution of the structure, together with thermodynamic and mutational studies of DNA binding, allow us to propose a molecular basis for DNA binding and define the features required for eukaryotic and archaeal OB folds.  相似文献   

9.
While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence–absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages.  相似文献   

10.
Attempts were made to define the relationship among the three domains (eukaryotes, archaea, and eubacteria) using phylogenetic tree analyses of 16S rRNA sequences as well as of other protein sequences. Since the results are inconsistent, it is implied that the eukaryotic genome has a chimeric structure. In our previous studies, the origin of eukaryotes to be the symbiosis of archaea into eubacteria using the whole open reading frames (ORF) of many genomes was suggested. In these studies, the species participating in the symbiosis were not clarified, and the effect of gene duplication after speciation (in-paralog) was not addressed. To avoid the influence of the in-paralog, we developed a new method to calculate orthologous ORFs. Furthermore, we separated eukaryotic in-paralogs into three groups by sequence similarity to archaea, eubacteria (other than -proteobacteria), and -proteobacteria and treated them as individual organisms. The relationship between the three ORF groups and the functional classification was clarified by this analysis. The introduction of this new method into the phylogenetic tree analysis of 66 organisms (4 eukaryotes, 13 archaea, and 49 eubacteria) based on gene content suggests the symbiosis of pyrococcus into -proteobacteria as the origin of eukaryotes.  相似文献   

11.
Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson''s paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins.  相似文献   

12.
The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.  相似文献   

13.
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently.  相似文献   

14.
Unveiling new microbial eukaryotes in the surface ocean   总被引:2,自引:0,他引:2  
A decade after molecular techniques were used to discover novel bacteria and archaea in the oceans, the same approach has revealed a wealth of new marine eukaryotic microbes. The approach has been particularly successful with the smallest eukaryotes, where morphological and culture approaches frequently fail. Analysis of samples from the surface ocean, the most accessible and supposedly well-known oceanic region, reveals novel eukaryotic diversity at all different levels: from the highest taxonomic rank to the lowest microdiverse clusters. Moreover, marine eukaryotic assemblages show a large diversity with members belonging to many different lineages. The implication of this large and novel eukaryotic diversity for biodiversity surveys and ecosystem functioning opens new avenues for future research.  相似文献   

15.
Chaperonins are oligomeric protein-folding complexes which are divided into two distantly related structural classes. Group I chaperonins (called GroEL/cpn60/hsp60) are found in bacteria and eukaryotic organelles, while group II chaperonins are present in archaea and the cytoplasm of eukaryotes (called CCT/TriC). While archaea possess one to three chaperonin subunit-encoding genes, eight distinct CCT gene families (paralogs) have been characterized in eukaryotes. We are interested in determining when during eukaryotic evolution the multiple gene duplications producing the CCT subunits occurred. We describe the sequence and phylogenetic analysis of five CCT genes from TRICHOMONAS: vaginalis and seven from GIARDIA: lamblia, representatives of amitochondriate protist lineages thought to have diverged early from other eukaryotes. Our data show that the gene duplications producing the eight CCT paralogs took place prior to the organismal divergence of TRICHOMONAS: and GIARDIA: from other eukaryotes. Thus, these divergent protists likely possess completely hetero-oligomeric CCT complexes like those in yeast and mammalian cells. No close phylogenetic relationship between the archaeal chaperonins and specific CCT subunits was observed, suggesting that none of the CCT gene duplications predate the divergence of archaea and eukaryotes. The duplications producing the CCTdelta and CCTepsilon subunits, as well as CCTalpha, CCTbeta, and CCTeta, are the most recent in the CCT gene family. Our analyses show significant differences in the rates of evolution of archaeal chaperonins compared with the eukaryotic CCTs, as well as among the different CCT subunits themselves. We discuss these results in light of current views on the origin, evolution, and function of CCT complexes.  相似文献   

16.
There is currently no consensus on the evolutionary origin of eukaryotes. In the search of the ancestors of eukaryotes, we analyzed the phylogeny of 46 genomes, including those of 2 eukaryotes, 8 archaea, and 36 eubacteria. To avoid the effects of gene duplications, we used inparalog pairs of genes with orthologous relationships. First, we grouped these inparalogs into the functional categories of the nucleus, cytoplasm, and mitochondria. Next, we counted the sister groups of eukaryotes in prokaryotic phyla and plotted them on a standard phylogenetic tree. Finally, we used Pearson's chi-square test to estimate the origin of the genomes from specific prokaryotic ancestors. The results suggest the eukaryotic nuclear genome descends from an archaea that was neither euryarchaeota nor crenarchaeota and that the mitochondrial genome descends from alpha-proteobacteria. In contrast, genes related to the cytoplasm do not appear to originate from a specific group of prokaryotes.  相似文献   

17.
In eukaryotes and most bacteria, the MutS1/MutL-dependent mismatch repair system (MMR) corrects DNA mismatches that arise as replication errors. MutS1 recognizes mismatched DNA and stimulates the nicking endonuclease activity of MutL to incise mismatch-containing DNA. In archaea, there has been no experimental evidence to support the existence of the MutS1/MutL-dependent MMR. Instead, it was revealed that a large part of archaea possess mismatch-specific endonuclease EndoMS, indicating that the EndoMS-dependent MMR is widely adopted in archaea. However, some archaeal genomes encode MutS1 and MutL homologs, and their molecular functions have not been revealed. In this study, we purified and characterized recombinant MutS1 and the C-terminal endonuclease domain of MutL from a methanogenic archaeon Methanosaeta thermophila (mtMutS1 and the mtMutL CTD, respectively). mtMutS1 bound to mismatched DNAs with a higher affinity than to perfectly-matched and other structured DNAs, which resembles the DNA-binding specificities of eukaryotic and bacterial MutS1 homologs. The mtMutL CTD showed a Mn2+/Ni2+/Co2+-dependent nicking endonuclease activity that introduces single-strand breaks into a circular double-stranded DNA. The nicking endonuclease activity of the mtMutL CTD was impaired by mutagenizing the metal-binding motif that is identical to those of eukaryotic and bacterial MutL endonucleases. These results raise the possibility that not only the EndoMS-dependent MMR but also the traditional MutS1/MutL-dependent MMR exist in archaea.  相似文献   

18.
19.
Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimonious reconstruction of ancestral gene repertoires shows that 4137 orthologous gene sets in the last eukaryotic common ancestor (LECA) map back to 2150 orthologous sets in the hypothetical first eukaryotic common ancestor (FECA) [paralogy quotient (PQ) of 1.92]. Analogous reconstructions show significantly lower levels of paralogy in prokaryotes, 1.19 for archaea and 1.25 for bacteria. The only functional class of eukaryotic proteins with a significant excess of paralogous clusters over the mean includes molecular chaperones and proteins with related functions. Almost all genes in this category underwent multiple duplications during early eukaryotic evolution. In structural terms, the most prominent sets of paralogs are superstructure-forming proteins with repetitive domains, such as WD-40 and TPR. In addition to the true ancestral paralogs which evolved via duplication at the onset of eukaryotic evolution, numerous pseudoparalogs were detected, i.e. homologous genes that apparently were acquired by early eukaryotes via different routes, including horizontal gene transfer (HGT) from diverse bacteria. The results of this study demonstrate a major increase in the level of gene paralogy as a hallmark of the early evolution of eukaryotes.  相似文献   

20.
Archaea, bacteria and eukaryotes represent the main kingdoms of life. Is there any trend for amino acid compositions of proteins found in full genomes of species of different kingdoms? What is the percentage of totally unstructured proteins in various proteomes? We obtained amino acid frequencies for different taxa using 195 known proteomes and all annotated sequences from the Swiss-Prot data base. Investigation of the two data bases (proteomes and Swiss-Prot) shows that the amino acid compositions of proteins differ substantially for different kingdoms of life, and this difference is larger between different proteomes than between different kingdoms of life. Our data demonstrate that there is a surprisingly small selection for the amino acid composition of proteins for higher organisms (eukaryotes) and their viruses in comparison with the "random" frequency following from a uniform usage of codons of the universal genetic code. On the contrary, lower organisms (bacteria and especially archaea) demonstrate an enhanced selection of amino acids. Moreover, according to our estimates, 12%, 3% and 2% of the proteins in eukaryotic, bacterial and archaean proteomes are totally disordered, and long (> 41 residues) disordered segments are found to occur in 16% of arhaean, 20% of eubacterial and 43% of eukaryotic proteins for 19 archaean, 159 bacterial and 17 eukaryotic proteomes, respectively. A correlation between amino acid compositions of proteins of various taxa, show that the highest correlation is observed between eukaryotes and their viruses (the correlation coefficient is 0.98), and bacteria and their viruses (the correlation coefficient is 0.96), while correlation between eukaryotes and archaea is 0.85 only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号