首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial spot, caused by Xanthomonas spp., is one of the major diseases of pepper in Brazil, causing considerable losses to crop productivity. The efficient management of the disease is hampered by the high variability of the causal agents. In Brazil, there is no knowledge of which species of Xanthomonas occurs on pepper. In this study, 59 strains of Xanthomonas spp. isolated from different pepper‐producing regions of Brazil were characterized by biochemical and molecular techniques. Results showed the prevalence of X. euvesicatoria as the causal agent of bacterial spot on pepper in Brazil.  相似文献   

2.
Spongospora subterranea, which causes powdery scab of potato, infects a diverse range of plant species. Crop rotation as a powdery scab management tool will be compromised if pathogen hosts exist between potato crops. Opium poppy (Papaver somniferum) and pyrethrum (Tanacetum cinerariifolium) are important crops within intensive vegetable production rotations in NW Tasmania. Measurements of S. subterranea soil inoculum within a commercial field showed pathogen amounts were substantially elevated following an opium poppy crop, which suggested host status. In glasshouse testing, opium poppy and pyrethrum were confirmed as hosts of S. subterranea, with opium poppy the more susceptible of the two. Both species were less susceptible than tomato, a known host. Observations of early growth suggested inoculation impacts on all three plant species, although at 16 (tomato and opium poppy) or 26 (pyrethrum) weeks postinoculation, only tomato had significantly reduced shoot and root development. The role of rotation crops in inoculum persistence and the possible role of S. subterranea as a minor pathogen of nonpotato crops are discussed.  相似文献   

3.
Ixora spp. are Rubiaceae plants commonly planted as hedges or potted flower. Recently, incidents of bacterial leaf spot of Ixora were observed in central parts of Taiwan. Previous research on the disease has been scarce and focused mainly on its diagnosis. Therefore, many characteristics of the causal agent remain unclear. The present study aims to improve our understanding of this lesser-characterized pathogen and provide information useful for its identification and management. Bacterial strains Ixo1, Ixo2 and Ixo3 were isolated from infected Ixora x westii. All three isolates were able to grow and induce leaf spot symptoms on Ixora. They also exhibited morphological and physiological characteristics typical of Xanthomonads. Biolog analysis indicated that Ixo1 to Ixo3 have metabolic fingerprints similar to X. axonopodis pv. poinsettiicola. Multilocus sequence analysis and inoculation assays identified Ixo1 to Ixo3 as X. axonopodis pv. maculifoliigardeniae, albeit their gene sequences were very similar to other species/pathovars belonging to the X. euvesicatoria species complex; members of this species complex have different plant hosts, yet share similar housekeeping gene sequences. A semi-specific PCR assay evaluated in this work was able to differentiate Ixo1 to Ixo3 from bacteria not belonging to the X. euvesicatoria species complex, suggesting that the assay may be used in diagnosing bacterial leaf spot of ixoras. Finally, the sensitivity of the isolated pathogen to multiple commercial pesticides was tested, and the results showed that the bacterium is sensitive to streptomycin + tetracycline (10% SP), thiophanate methyl + streptomycin (68.8% WP) and oxolinic acid (20% WP), but more tolerant against copper-based chemicals. Overall, the findings from this work may facilitate the identification and management of X. axonopodis pv. maculifoliigardeniae.  相似文献   

4.
Since the initial discovery of Xanthomonas perforans on tomato in 1991, it has completely displaced Xanthomonas euvesicatoria as the bacterial spot of tomato pathogen in Florida. Previous research has shown that X. perforans produces at least three different bacteriocin-like compounds (BcnA, BcnB, BcnC) antagonistic toward X. euvesicatoria strains. In this study pathogenicity-attenuated, bacteriocin-producing mutants of X. perforans were created to determine their potential as biological control agents for control of X. euvesicatoria. Several candidate genes were chosen based on previous studies in which mutant phenotypes exhibited reduced virulence in either X. perforans (OpgHXcv) or the closely related X. euvesicatoria strain 85-10 (hpaB, hpaC, xopA, xopD, avrBs2 and gumD). Each candidate gene in X. perforans was amplified and PCR-assisted deletion mutagenesis was performed in the wild-type (wt) X. perforans strain to create potential attenuation mutants. Each mutant was tested for growth rate, disease severity and antagonism toward X. euvesicatoria strains. Three mutants, XopA, opgH, and gumD were significantly less pathogenic than the wild-type strain with the opgH mutant reaching significantly lower internal populations than all other mutants except hpaC. The opgH-strain was the most affected in its ability to grow internally in plant tissue while inhibiting X. euvesicatoria populations equal to or more than the other mutant strains. This mutant strain could potentially be used as part of an effective biological control strategy.  相似文献   

5.
Four Xanthomonas species are known to cause bacterial spot of tomato and pepper, but the global distribution and genetic diversity of these species are not well understood. A collection of bacterial spot-causing strains from the Americas, Africa, Southeast Asia, and New Zealand were characterized for genetic diversity and phylogenetic relationships using multilocus sequence analysis of six housekeeping genes. By examining strains from different continents, we found unexpected phylogeographic patterns, including the global distribution of a single multilocus haplotype of X. gardneri, possible regional differentiation in X. vesicatoria, and high species diversity on tomato in Africa. In addition, we found evidence of multiple recombination events between X. euvesicatoria and X. perforans. Our results indicate that there have been shifts in the species composition of bacterial spot pathogen populations due to the global spread of dominant genotypes and that recombination between species has generated genetic diversity in these populations.  相似文献   

6.
Effector‐triggered immunity (ETI) to host‐adapted pathogens is associated with rapid cell death at the infection site. The plant‐pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI‐associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI‐associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein–protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14–3–3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14–3–3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI‐associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity‐associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ.  相似文献   

7.
In this study, 76 bacterial strains were isolated from the rhizosphere soil of pepper. Of these, 23 bacterial isolates capable of inhibiting Phytophthora capsici growth were selected. Among the antagonistic bacteria, one strain, IBFCBF‐1 showed the strongest antagonistic activity, and was identified as Bacillus amyloliquefaciens based on the results of 16S rRNA gene sequence analysis, physiological and biochemical testing, and morphological characteristics. When tested with a dual‐culture method and with laboratory greenhouse studies, the strain IBFCBF‐1 was found to be a potential biocontrol agent for controlling the plant pathogen, P. capsici. Moreover, it showed high efficiency and broad‐spectrum antifungal properties in vitro. Under greenhouse conditions, IBFCBF‐1 could significantly promote the growth of pepper seedlings, and was able to solubilize phosphate, and produce indole acetic acid (IAA) and ammonia. This study clearly demonstrated that IBFCBF‐1 is a potential candidate exhibiting phytophthora blight‐suppressive and plant growth‐promoting effects on pepper.  相似文献   

8.
Assessment of pathogen diversity in agricultural fields is essential for informing management decisions and the development of resistant plant varieties. However, many population genomic studies have relied on culture-based approaches that do not provide quantitative assessment of pathogen populations at the field-level or the associated host microbiome. Here, we applied whole-genome shotgun sequencing of microbial DNA extracted directly from the washings of pooled leaf samples, collected from individual tomato and pepper fields in Alabama that displayed the classical symptoms of bacterial spot disease caused by Xanthomonas spp. Our results revealed that while the occurrence of both X. perforans and X. euvesicatoria within fields was limited, evidence of co-occurrence of up to three distinct X. perforans genotypes was obtained in 7 of 10 tomato fields sampled. These population dynamics were accompanied by the corresponding type 3 secreted effector repertoires associated with the co-occurring X. perforans genotypes, indicating that metapopulation structure within fields should be considered when assessing the adaptive potential of X. perforans. Finally, analysis of microbial community composition revealed that co-occurrence of the bacterial spot pathogens Pseudomonas cichorii and Xanthomonas spp. is common in Alabama fields and provided evidence for the non-random association of several other human and plant opportunists.  相似文献   

9.
Bactericera cockerelli (Sulc.) is a serious pest of solanaceous crops and a vector of the plant pathogen Candidatus Liberibacter psyllaurous. Entomopathogenic fungi are the most important biological control alternatives for this pest. Host plant species, however, can modify the outcomes of insect–pathogen interactions. We conducted laboratory experiments to quantify the virulence of two isolates of the entomopathogenic fungus Beauveria bassiana (Bals. [Vuill.]), BB40 and BB42, against third instar B. cockerelli nymphs maintained on chilli pepper plants. Owing to the lack of difference in virulence against B. cockerelli nymphs on chilli pepper between the two B. bassiana isolates, only BB42 was used to: compare virulence against nymphs maintained on either chilli pepper, potato or tomato; and in vivo conidia production from nymphs maintained on different host plants. Virulence of the two B. bassiana isolates against B. cockerelli nymphs was similar. Bactericera cockerelli nymphs maintained on tomato were more susceptible to B. bassiana than nymphs maintained on potato or chilli peppers. Infected nymphs maintained on chilli peppers produced the greatest number of conidia followed by infected nymphs maintained on tomato and potato. Host plant affected the susceptibility of B. cockerelli to B. bassiana isolate BB42 and subsequent conidia production. The implications of our results for microbial control of B. cockerelli by B. bassiana are discussed.  相似文献   

10.
Colletotrichum truncatum was initially described from pepper and has been reported to infect 180 host genera in 55 plant families worldwide. Samples were collected from pepper plants showing typical anthracnose symptoms. Diseased samples after isolation were identified as C. truncatum based on morphological characters and ITS‐rDNA and β‐tubulin sequence data. Intersimple sequence repeat (ISSR) markers were used to estimate genetic diversity in C. truncatum from Malaysia. A set of 3 ISSR primers revealed a total 26 allele from the amplified products. Cluster analysis with UPGMA method clustered C. truncatum isolates into two main groups, which differed with a distance of 0.64. However, the genetic diversity of C. truncatum isolates showed correlation between genetic and geographical distribution, but it failed to reveal a relationship between clustering and pathogenic variability. Phylogenetic analyses discriminated the C. truncatum isolates from other reference Colletotrichum species derived from GenBank. Among the morphological characters, shape, colour of colony and growth rate in culture were partially correlated with the ISSR and phylogenetic grouping. Pathogenicity tests revealed that C. truncatum isolates were causal agents for pepper anthracnose. In the cross‐inoculation assays, C. truncatum isolates were able to produce anthracnose symptoms on tomato, eggplant, onion, lettuce and cabbage. A pathogenicity and cross‐inoculation studies indicated the potential of C. truncatum for virulence and dominancy on plant resistance.  相似文献   

11.
Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants.  相似文献   

12.
Inoculation of pepper seeds with the leaf pathogen Xanthomonas campestris pv. vesicatoria inhibited pepper germination. The inhibitory effect, which was stronger in non-sterilized light textured soils, decreased with time, and after 20, days or more, there was no difference between inoculated and non-inoculated seeds. Inhibitory substance(s) within the cytoplasmatic fraction of pathogen cells inhibited the germination of non-host tomato seeds. No relationship between pathogenicity to pepper leaves and inhibition of pepper seed germination was detected. The inhibitory substance(s) was found in two out of four X. campestris pv. vesicatoria strains. Heat-killed bacteria suppressed growth of pepper but not tomato seedlings. It is, therefore, suggested that the inhibition of seed germination and the decrease in root development are different modes of X. campestris pv. vesicatoria pathogenesis toward pepper plants.  相似文献   

13.
Togninia minima is the main fungal species associated with grapevine leaf stripe disease worldwide. This species is mainly known from its asexual state in nature; nevertheless, a biallelic heterothallic mating strategy has been confirmed for this species based on in vitro crossing studies. There are no data available on the incidence of an active sexual cycle within the populations of this species in many grapevine‐producing countries as well as Iran. The possibility of a clandestine sexual cycle within the Iranian isolates of T. minima was evaluated by analysing the distribution and frequency of the mating‐type alleles on a microspatial and a macrogeographical scales. Towards this aim, a total of 90 T. minima isolates were recovered from grapevines with esca disease from the vineyards in north and north‐western Iran. A multiplex PCR method previously designed by authors was applied for simultaneous identification and determination of the mating‐type alleles in T. minima populations. The results on the screening of mating‐type alleles using multiplex PCR method revealed the mating‐type identity of 77 isolates as Mat1‐2 and 23 isolates as Mat1‐1. Our results showed that both Mat1‐1 and Mat1‐2 isolates are present in a single vineyard and even on single vines. The distribution of mating‐type alleles in the sampled area skewed from the 1 : 1 ratio (77 : 23); however, co‐occurrence of both mating types in a single vineyard and even on single vines is suggestive for the presence of an active sexual cycle for T. minima in north‐western Iran.  相似文献   

14.
The differences in the ability of the invading whitefly, Bemisia tabaci (Gennadius) (commonly known as biotype B and hereafter as B) and Trialeurodes vaporariorum (Westwood) (both Hemiptera: Aleyrodidae) to utilize salivary phenol‐oxidizing enzymes – polyphenol oxidase (PPO) and peroxidase (POD) to detoxify plant defensive phenolic compounds were explored. Polyphenol oxidase and POD were found in the saliva of both B and T. vaporariorum. For tomato colonies, the PPO and POD activities in the watery saliva of B were 2.27‐ and 1.34‐fold higher than those of T. vaporariorum. The PPO activities against specific phenolic compounds commonly found in plants were compared. The activities of those from B were significantly greater than those from T. vaporariorum. We also measured PPO activity in both species after they had fed on plants that were undamaged or had been previously damaged with either a plant pathogen [Phytophthora infestans (Mont.) de Bary (Peronosporales)] infection, mechanical damage, B infestation, or exogenous salicylic acid. For B, PPO activities in watery saliva increased 229, 184, 152, and 139% in response to the four treatments, whereas those of T. vaporariorum only increased 133, 119, 113, and 103%, respectively. Biotype B infestation significantly increased the total phenolic content of tomato leaves. Meanwhile, feeding on tomato infestation with B had no significant effect on the survival rate of B, but decreased the survival rate of T. vaporariorum significantly. These results suggest that B has stronger ability utilizing PPO to detoxify high concentrations of phenolics than T. vaporariorum, and this contributes to a significant advantage for B to hold high fitness on plants with induced resistance. Possible roles of salivary PPO in the competition between B and T. vaporariorum are discussed.  相似文献   

15.
Trunk diseases are potential threats for almond productivity and longevity worldwide, including Iran. In a recent survey on fungal species associated with trunk diseases of almonds in north‐western Iran, Collophora isolates (tentatively identified as Collophora hispanica) were recovered with high frequency from wood samples with internal necrosis and brown to black vascular streaking of almond trees showing symptoms of decline. However, the pathogenic potential of Collophora isolates on almond trees in Iran remains unproven. In this study, the identity of the isolates was further confirmed as C. hispanica based on a combination of morphological data and sequence data of ITS‐rDNA region, and pathogenicity of C. hispanica isolates on almond was evaluated using excised shoot method and in greenhouse experiments. Collophora hispanica isolates induced lesions statistically different from the control, in both excised shoot method and greenhouse assays. Significant differences were observed among the isolates in the length of the lesion induced on wood. Collophora hispanica should be considered as the main trunk pathogens of almond trees in north‐western region of Iran. The distribution and host range of this new pathogen on almond remains to be studied.  相似文献   

16.
A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty‐two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 × 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative‐stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive‐stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.  相似文献   

17.
Fusarium oxysporum f. sp. lycopersici (FOL) induces resistance in pepper against the airborne pathogen Botrytis cinerea and the soil‐borne pathogen Verticillium dahliae. However, its practical use is limited due to its pathogenicity to other crops. In this study we tested several fractions of a heat‐sterilised crude FOL‐elicitor preparation to protect pepper against B. cinerea and V. dahliae. Only the protein‐free insoluble fraction of the preparation reduced B. cinerea infection. However, none of the fractions reduce V. dahliae symptoms. The insoluble protein‐free fraction induced expression of defence genes in the plant, namely a chitinase (CACHI2), a peroxidase (CAPO1), a sesquiterpene cyclase (CASC1) and a basic PR1 (CABPR1). Even though the CASC1 gene was not induced directly after treatment with the insoluble fraction in the leaves, it was induced after B. cinerea inoculation, showing a priming effect. The insoluble protein‐free FOL‐elicitor protected pepper against the airborne pathogen through a mechanism that involves induced responses in the plant, but different to the living FOL.  相似文献   

18.
Tomato plants are highly susceptible to root infection by Spongospora subterranea and are commonly used as bioassay hosts. The impacts of root infection with S. subterranea on plant productivity and yield have been debated. Recent experiments with potato, the major economic host of S. subterranea, have indicated significantly reduced plant growth and potato yield following heavy infection. However, there have been very few similar studies that have examined the possible impacts of S. subterranea infection on tomato plant growth. Three tomato cultivars, “Grape,” “Roma” and “Truss,” were challenged with S. subterranea inoculum in hydroponic culture. Moderate to severe zoosporangial infections were observed with minor but statistically significant differences in susceptibility among the three tomato cultivars. Zoosporangial root infection in the absence of root gall formation resulted in significantly diminished shoot lengths and plant fresh weights in pathogen challenge tests conducted both in hydroponic culture and glasshouse‐grown plants in potting mix. Root lengths were reduced, but the differences were statistically significant in a single trial only. The findings from this study demonstrate that, as with potato, root infection by S. subterranea can result in reduced tomato plant growth and that root gall production associated with root infection was not necessary for this retardation of growth response. This further suggests that possible yield impacts in other crop species that are hosts for S. subterranea root infection are worthy of examination.  相似文献   

19.
Two 1-aminocyclopropane-1-carboxylate deaminase-producing bacterial strains (DP24 and XG32) were isolated from surface-sterilized tomato roots and rizhospere soil. The strains were identified as Pseudomonas fluorescens biovar. IV (XG2) and Erwinia herbicola (DP24) by physiological and biochemical tests, and 16S rRNA gene analysis. Both strains showed positive plant growth-promoting activity when inoculated into cucumber (Cucumis sativus), tomato (Lycopersicon esculentum), pepper (Capsicum annuum) and rapeseed (Brassica napus L.). Colonization ability and behavior of these two strains were determined by treating mutant strains with rifampicin and fluorescence in situ hybridization (FISH) assay with rRNA targeted probes, respectively. Both strains were endophytic colonizers of pepper plants. The behavior of the two strains was not identical. Strain XG32 only colonized the root and reached the max level of 27.7 × 107 c.f.u./g (fresh weight), after 12 days postinoculation, while strain DP24 was able to colonize the roots, stems and leaves. The max level was reached at 40.87 × 107 c.f.u./g (fresh weight) in the roots, 17 × 107 c.f.u./g in the stems after 7 days postinoculation and 44.84 × 107 c.f.u./g in the leaves after 12 days postinoculation.  相似文献   

20.
An understanding of biocontrol activities is important when developing microorganism‐based alternatives to conventional fungicides. From our bacterial collection, we selected two strains (BBC023 and BBC047) for their outstanding antagonistic capacity against fungal phytopathogens and growth‐promoting abilities towards Arabidopsis thaliana. According to physiological and molecular characterizations, both strains were classified as Bacillus amyloliquefaciens and were tested against Botrytis cinerea in vitro and in a tomato. Both strains secrete lipopeptide‐like compounds that contribute to their in vitro antagonism. SEM‐images showed altered B. cinerea mycelial structures that were consistent with previous reports of the direct action of lipopeptides against fungal hyphae. The strains were applied to the roots (R), leaves (foliar ‐ F) or root/leaves (R/F) on tomato plants. All treatments significantly reduced the severity of B. cinerea infection (measured as a control index). However, only root applications (R and R/F) led to growth promotion in the tomato plants. We detected the production of indole acetic acid (IAA) and 2,3‐butanediol as growth promotion traits in the two strains. For both strains, the R/F treatment showed the highest control index, suggesting a synergic effect of direct antagonism against B. cinerea and resistance induction in the plant. In addition, in vitro antagonism of BBC023 and BBC047 against B. cinerea was similar; whereas in the F application, strain BBC047 significantly improved plant resistance and maintained a higher population density over time on tomato leaves, compared to BBC023. BBC047 was also able to produce a complex and robust biofilm in Msgg medium compared with that of BBC023. We linked the reduced biocontrol of BBC023 on leaves with its limited ability to generate robust biofilms and colonize the phylloplane. At last, we highlight the potential of the native Bacillus strains as promising alternatives for the development of bioproducts for sustainable agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号