首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Abstract— Angiotensin converting enzyme (peptidyl dipeptide hydrolase EC 3.4.15.1) was extracted from particulates of rat brain using the nonionic detergent Triton X-100. Enzyme activity in subcellular fractions was associated with purified synaptosomes and present in the microsomal fraction, but absent in purified mitochondria and water-shocked myelin. Partial purification was achieved by chromatography on DEAE-cellulose and hydroxylapatite columns. The enzyme had a pH optimum of pH 7–8 and an apparent Km of 2.2 m m using hippuryl-histidyl-leucine as substrate; it was chloride dependent, inhibited by (Sar1-Ala8)-angiotensin-II (saralasin), and, at lower concentrations, by the specific nonapeptide inhibitor SQ 20881. Associated with the purified enzyme was an aminopeptidase, cleaving N-terminal Asp from the native substrate, which could be involved in the production of the active heptapeptide, angiotensin III (des-Asp-angiotensin-II). Also present was a carboxypeptidase-like enzyme removing C-terminal Phe following the liberation of His-Leu by converting enzyme, which may be involved in the inactivation of angiotensin II or III.  相似文献   

2.
Subcellular distribution of rat brain UDP-glucose:ceramide glucosyltransferase, the enzyme which catalyses the first step during the sequential addition of carbohydrate moieties for ganglioside biosynthesis, was studied. The activity of the enzyme was highest in the fraction rich in microsomes. Subfractionation of crude microsomal fractions resulted in a further enrichment of the enzyme activity in the fraction which contained smooth microsomes, thus suggesting that the enzyme is associated with microsomal membranes. The enzyme does not appear to be associated with synaptosomes or myelin. Treatment of the microsomal fraction with phospholipase A and C or detergents resulted in the loss of enzyme activity. Preincubation of the microsomal fraction at 37 °C also resulted in a loss of enzyme activity. These results suggest the requirement of specific membrane structure for the activity of the enzyme UDP-glucose:ceramide glucosyltransferase of rat brain. The amount of the enzyme activity lost during preincubation was dependent on the composition of the incubation medium and the age of the rats from which microsomal fractions were obtained.  相似文献   

3.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

4.
Abstract— The fraction that sediments between 2 × 105 g -min and 6 × 106 g -min from dilute dispersions of rat brain in 0.32 m -sucrose is a microsomal fraction with very little contamination by myelin. A crude microsomal fraction prepared in the same way from rat spinal cord contains more myelin than microsomes. Centrifugation of the crude microsomal fraction in 0.85 m -sucrose gave a floating fraction, an infranatant fraction (purified microsomes) and a small pellet. The purified microsomes contained very little myelin as judged by electron microscopy and polyacrylamide gel electrophoresis. The lipid composition resembled that of spinal cord myelin except that the purified microsomes contained relatively less cholesterol and ethanolamine plasmalogens. The content of galactolipids was much greater in spinal cord microsomes than in brain microsomes. The spinal cord CDP-ethanol-amine:diglyceride ethanolaminephosphotransferase activity (EC 2.7.8.1) was concentrated in the purified microsomes.
A spinal cord myelin fraction isolated from the 2 × 105 g -min pellet was quite pure as judged by electron microscopy, enzyme activities and polyacrylamide gel electrophoresis. No NADPH-cyto-chrome c reductase activity (EC 1.6.2.3) could be detected in the purified myelin. The ethanolaminephosphotransferase specific activity was about 5% of that found in the purified microsomal fraction. The protein content was 25% by weight for spinal cord myelin and 31% for brain myelin. Of the total spinal cord 2',3'-cyclic nucleotide-3'-phosphohydrolase activity, 16% was lost from the crude myelin during purification, 21% was recovered in the purified myelin, and 11% was found in the floating fraction from the crude microsomes. The purified myelin and microsomal fractions from spinal cord were relatively pure. Additional myelin was recovered in the floating fraction from the crude microsomes.  相似文献   

5.
Abstract— The enzymes for the biosynthesis of phosphatidic acid from acyl dihydroxyacetone phosphate were shown to be present in rat brain. These enzymes were mainly localized in the microsomal fraction of 12–14 day old rat brains. The brain microsomal acyl CoA: dihydroxyacetone phosphate acyl transferase (EC 2.3.1.42), exhibited a broad pH optimum between pH 5 and 9 with maximum activity at pH 5.4. K m for DHAP at pH 5.4 was 0.1 m m and V max was 0.86nmol/min/mg of microsomal protein. The corresponding microsomal enzyme for the glycerophosphate pathway (acyl CoA: sn -glycerol-3-phosphate acyl transferase EC 2.3.1.15) was shown to have a different pH optimum (pH 7.6). On the basis of the differences in pH optima, differential effects of sodium cholate in the enzymes and a common substrate competition study, these acyl transferases were postulated to be two different microsomal enzymes.
Acyl DHAP:NADPH oxidoreductase (EC 1.1.1.101) in brain microsomes was found to be quite specific for NADPH as cofactor, being able to utilize NADH only at very high concentrations. This enzyme exhibited a K m of 8.6 μ m with NADPH and V mx of 0.81 nmol/min/mg protein. The presence of these two enzymes and the known presence of l-acyl- sn -glycerol-3-phosphate: acyl CoA acyl transferase in brain (F leming & H ajra , 1977) demonstrated the biosynthesis of phosphatidic acid in brain via acyl dihydroxyacetone phosphate. Phosphatidic acid was shown to form when dihydroxyacetone phosphate, acyl CoA, NADPH and other cofactors were incubated together with brain microsomes. Further properties of the enzymes and the probable importance of the presence of this pathway in brain were discussed.  相似文献   

6.
Abstract— The properties of rat CNS UDP-galactose-ceramidc galactosyltransferase in an axolemma-enriched fraction (AXL), microsomes, and myelin simultaneously isolated with the AXL was characterized using a newly developed assay system. The microsomal enzyme utilized either magnesium or manganese equally well as the divalent cation at 3.3 m m , while both the myelin and AXL enzyme preferred manganese over magnesium at this concentration. The microsomal enzyme was more stable to heat inactivation than the myelin or AXL enzyme. The AXL galactosyltransferase had the highest specific activity at 15 days (8-fold higher than that of the microsomes) and dramatically decreased in specific activity with development. The developmental profile of the myelin enzyme paralleled that of the AXL although the absolute specific activity was lower than that of AXL. In contrast, the specific activity of microsomal enzyme was quite low at the earliest age then sharply increased to 25 days and gradually decreased with further development. The specific activity of the enzyme in AXL isolated from Quaking mouse was dramatically decreased (about 5% of control levels) whereas both whole homogenate and microsomal specific activity were decreased to 35% of control levels. These data indicate that AXL and myelin contain a galactosyltransferase with properties which are unique relative to those of the microsomal fraction. The possible functional significance of these findings with respect to myelination is discussed.  相似文献   

7.
The effect of the supernatant fraction (105,000 g for 60 min) of rat brain on the microsomal thiamine diphosphatase activity was examined. The thiamine diphosphatase activity was increased by addition of the supernatant fraction. The factor activating the enzyme was a heat-stable and dialyzable substance. It caused lipid peroxidation in the microsomes and the increase of the enzyme activity was mediated through lipid peroxidation of the preparation. When the supernatant fraction was chromatographed on columns of Sephadex G-25 and Dowex 1 × 2, the activator was eluted in fractions containing ascorbic acid. The inhibitory factor of ATPase present in the supernatant fraction was also eluted with the activator. The u.v.-spectrum of the active fraction obtained by these chromatographies was the same as that of ascorbic acid. These findings indicate the existence of ascorbic acid as an activator of thiamine diphosphatase in rat brain and confirm the previous finding that the soluble factor inhibiting ATPase activity is ascorbic acid.  相似文献   

8.
The distribution in rat brain of angiotensin converting enzyme (EC3.4.15.1) using hippuryl-His-Leu as substrate was identical to a dipeptidyl carboxypeptidase present in membranes assayed with Met-enkephalin as substrate. Highest activity occurred in pituitary, followed by cerebellum, corpus striatum, midbrain, pons-medulla, hypothalamus, cerebral cortex and spinal cord. The ratio of products His-Leu/Tyr-Gly-Gly was identical for all regions but differed from His-Leu/Tyr. Angiotensin converting enzyme purified by immunoaffinity chromatography gave a Km for hippuryl-His-Leu of 0.5mM and for Met-enkephalin of 0.1 mM. In the presence of the specific inhibitor of angiotensin converting enzyme, SQ 14,225, the Ki value was 10?7M. Present data point to the co-identity of brain angiotensin converting enzyme with the dipeptidyl carboxypeptidase inactivating enkephalin.  相似文献   

9.
Abstract— Cyclic AMP (cAMP)-dependent protein kinase catalyzes the phosphorylation of polypeptidic serine and threonine residues according to the following chemical equation: ATP + protein → phospho-protein + ADP. A heat stable, trypsin labile factor present in brain, skeletal muscle and other tissues inhibits enzymatic phosphorylation of some proteins and enhances that of others. Since brain is one of the richest sources of adenylate cyclase, cAMP, cAMP-dependent protein kinase and the heat stable protein kinase inhibitor and because they may play a role in neurotransmission, an investigation of the subcellular distribution of the heat stable factor in rat brain was undertaken. Although present in the nuclear, mitochondrial and microsomal fractions, the highest activity of protein kinase inhibitor is in the soluble fraction: its activity parallels that of the cytoplasmic enzyme marker, lactate dehydro-genase. The inhibitory activity is also found in the synaptosome or pinched-off nerve ending fraction. Following osmotic lysis of this fraction, about 90% of the factor occurs in the soluble fraction. On the other hand, only 40% of the cAMP-dependent protein kinase is solubilized and 60% remains membrane-bound. Using this membrane-bound protein kinase, phosphorylation of endogenous substrate is unaltered by inhibitor, but phosphorylation of added histone substrate is decreased.  相似文献   

10.
1. Apyrase (ATP: diphosphohydrolase) has been found in the microsomal fraction of rat salivary gland, mammary gland and uterus. 2. This enzyme, already described in plant tissue, is mainly present as a soluble polypeptide in tubers of Solanum tuberosum. 3. A fraction of this enzyme is associated with the microsomal fraction with a higher specific activity than the soluble one, for either ATP or ADP as substrate. 4. Apyrase bound to microsomes from rat and potato tissues was characterized in its substrate specificity and effect of inhibitors. 5. The Km values for ATP and ADP, optimum pH and metal ion requirement were determined. 6. A characteristic common to the microsomal and soluble apyrases is the stimulatory effect of a potato activator protein of soluble plant apyrase. 7. The microsomal-bound apyrase from rat and potato tissues were solubilized and subjected to size-exclusion chromatography. 8. The mammary gland and salivary gland apyrases eluted as molecular aggregates, in contrast to the uterus and potato enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号