首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Abstract: Using the endogenous cannabinoid receptor agonist anandamide, the synthetic agonist CP 55940 {[1α,2β( R )5α]-(−)-5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol}, and the specific antagonist SR 141716 [ N -(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 H -pyrazole-3-carboxamide hydrochloride], second messenger activation of the central cannabinoid receptor (CB1) was examined in rat striatal and cortical slices. The effects of these cannabinoid ligands on electrically evoked dopamine (DA) release from [3H]dopamine-prelabelled striatal slices were also investigated. CP 55940 (1 µ M ) and anandamide (10 µ M ) caused significant reductions in forskolin-stimulated cyclic AMP accumulation in rat striatal slices, which were reversed in the presence of SR 141716 (1 µ M ). CP 55940 (1 µ M ) had no effect on either KCl- or neurotransmitter-stimulated 3H-inositol phosphate accumulation in rat cortical slices. CP 55940 and anandamide caused significant reductions in the release of dopamine after electrical stimulation of [3H]dopamine-prelabelled striatal slices, which were antagonised by SR 141716. SR 141716 alone had no effect on electrically evoked dopamine release from rat striatal slices. These data indicate that the CB1 receptors in rat striatum are negatively linked to adenylyl cyclase and dopamine release. That the CB1 receptor may influence dopamine release in the striatum suggests that cannabinoids play a modulatory role in dopaminergic neuronal pathways.  相似文献   

2.
Abstract: The human neuroblastoma cell line SK-N-BE expresses δ-opioid receptors negatively coupled to adenylyl cyclase. Prolonged treatment (2 h) of the cells with 100 n M etorphine leads to an almost complete desensitization (8.2 ± 5.9 vs. 45.8 ± 8.7% for the control). Other receptors negatively coupled to adenylyl cyclase, namely, D2-dopaminergic, α2-adrenergic, and m2/m4-muscarinic, were identified by screening of these cells, and it was shown that prolonged treatment (2 h) with 1 µ M 2-bromo-α-ergocryptine or 1 µ M arterenol resulted in a marked desensitization of D2-dopaminergic and α2-adrenergic receptors, respectively. Cross-desensitization experiments revealed that pretreatment with etorphine desensitized with the same efficiency the δ-opioid receptor and the D2-dopaminergic receptor, and pretreatment with 2-bromo-α-ergocryptine also desensitized both receptors. In contrast, pretreatment with etorphine desensitized only partly the α2-adrenergic receptor response, whereas pretreatment with 1 µ M arterenol partly desensitized the δ-opioid receptor response. It is concluded that the δ-opioid receptor-mediated inhibitory response of adenylyl cyclase undergoes heterologous desensitization, and it is suggested that δ-opioid and D2-dopaminergic receptors are coupled to adenylyl cyclase via a Gi2 protein, whereas α2-adrenergic receptor could be coupled to the enzyme via two G proteins, Gi2 and another member of the Gi/Go family.  相似文献   

3.
Abstract: This study was undertaken to characterize further the central cannabinoid receptors in rat primary neuronal cell cultures from selected brain structures. By using [3H]SR 141716A, the specific CB1 receptor antagonist, we demonstrate in cortical neurons the presence of a high density of specific binding sites ( B max = 139 ± 9 fmol/mg of protein) displaying a high affinity ( K D = 0.76 ± 0.09 n M ). The two cannabinoid receptor agonists, CP 55940 and WIN 55212-2, inhibited in a concentration-dependent manner cyclic AMP production induced by either 1 µ M forskolin or isoproterenol with EC50 values in the nanomolar range (4.6 and 65 n M with forskolin and 1.0 and 5.1 n M with isoproterenol for CP 55940 and WIN 55212-2, respectively). Moreover, in striatal neurons and cerebellar granule cells, CP 55940 was also able to reduce the cyclic AMP accumulation induced by 1 µ M forskolin with a potency similar to that observed in cortical neurons (EC50 values of 3.5 and 1.9 n M in striatum and cerebellum, respectively). SR 141716A antagonized the CP 55940- and WIN 55212-2-induced inhibition of cyclic AMP accumulation, suggesting CB1 receptor-specific mediation of these effects on all primary cultures tested. Furthermore, CP 55940 was unable to induce mitogen-activated protein kinase activation in either cortical or striatal neurons. In conclusion, our results show nanomolar efficiencies for CP 55940 and WIN 55212-2 on adenylyl cyclase activity and no effect on any other signal transduction pathway investigated in primary neuronal cultures.  相似文献   

4.
Cannabinoids exert a variety of physiological and pharmacological responses in humans through interaction with specific cannabinoid receptors. Cannabinoid receptors described to date belong to the seven-transmembrane-domain receptor superfamily and are coupled through the inhibitory G(i) protein to adenylyl cyclase inhibition. However, downstream signal transduction mechanisms triggered by cannabinoids are poorly understood. We examined here the involvement of the phosphoinositide 3-kinase (PI3K)/PKB pathway in the mechanism of action of cannabinoids in human prostate epithelial PC-3 cells. Cannabinoid receptors CB(1) and CB(2) are expressed in these cells, as shown by RT-PCR, Western blot and immunofluorescence techniques. Treatment of PC-3 cells with either Delta(9)-tetrahydrocannabinol (THC), the major psychoactive ingredient of marijuana, or R-(+)-methanandamide (MET), an analogue of the endogenous cannabinoid anandamide, increased phosphorylation of PKB in Thr308 and Ser473. The stimulation of PKB induced by cannabinoids was blocked by the two cannabinoid receptor antagonists, SR 141716 and SR 144528, and by the PI3K inhibitor LY 294002. These results indicate that activation of cannabinoid receptors in PC-3 cells stimulate the PI3K/PKB pathway. We further investigated the involvement of Raf-1/Erk activation in the mechanism of action of cannabinoid receptors. THC and MET induced translocation of Raf-1 to the membrane and phosphorylation of p44/42 Erk kinase, which was reversed by cannabinoid receptor antagonists and PI3K inhibitor. These results point to a sequential connection between cannabinoid receptors/PI3K/PKB pathway and Raf-1/Erk in prostate PC-3 cells. We also show that this pathway is involved in the mechanism of NGF induction exerted by cannabinoids in PC-3 cells.  相似文献   

5.
Abstract: In human Y-79 retinoblastoma cells, corticotropin-releasing hormone (CRH) stimulates adenylyl cyclase activity and increases cyclic AMP accumulation. Different CRH analogues mimic the CRH stimulation of adenylyl cyclase and show similar sensitivity to the CRH receptor antagonist α-helical CRH9–41. Vasoactive intestinal peptide (VIP) also increases the enzyme activity but less potently than CRH, and its effect is counteracted by the VIP receptor antagonist [ d - p -Cl-Phe6,Leu17]VIP. The VIP antagonist does not affect the response to CRH. The CRH-stimulated adenylyl cyclase activity is amplified by Mg2+, is inhibited by submicromolar concentrations of Ca2+, and requires GTP. Moreover, the CRH stimulation is reduced by pretreatment of cells with cholera toxin and by incubation of membranes with the RM/1 antibody, which recognizes the C-terminus of the α subunit of Gs. In immunoblots, the RM/1 antibody identifies a doublet of 45 and 52 kDa. Two proteins of similar molecular weights are ADP-ribosylated by cholera toxin. These data demonstrate that in human Y-79 retinoblastoma cells, specific CRH receptors stimulate cyclic AMP formation by interacting with Gs and by affecting a Ca2+-inhibitable form of adenylyl cyclase.  相似文献   

6.
M Guzmán  C Sánchez 《Life sciences》1999,65(6-7):657-664
The present review summarizes the recent work carried out by our group on the link between signal transduction pathways and metabolic regulation systems as affected by cannabinoids. In cells such as astrocytes and lymphocytes, which express cannabinoid receptors, physiologically relevant doses of cannabinoids induce a remarkable metabolic stimulation as determined e.g. by enhanced glucose utilization. Studies performed in astrocytes show that the cannabinoid-evoked stimulation of glucose metabolism is independent of adenylyl cyclase inhibition, and seems to rely on the cascade CB1 cannabinoid receptor --> Sphingomyelin breakdown --> Ceramide --> Raf-1 --> Mitogen-activated protein kinase (MAPK) --> Glucose utilization. A role for phosphoinositide 3'-kinase in the stimulation of glucose utilization by cannabinoids is also put forward. In addition, ceramide generated upon CB1 cannabinoid receptor activation may enhance ketone body production by astrocytes independently of MAPK. Anandamide has also been shown to exert metabolic effects in hepatocytes, cells that do not express cannabinoid receptors. The biological role of cannabinoids as modulators of metabolism is as yet unclear.  相似文献   

7.
Abstract: In anterior pituitary cells or when transfected into host cell lines, the D2 dopamine receptor inhibits adenylyl cyclase and activates potassium channels. The GH-3 pituitary tumor cell line, which lacks functional D2 receptors, responds to epidermal growth factor (EGF) by expressing a D2 receptor that, paradoxically, couples to potassium channel activation but poorly inhibits adenylyl cyclase; this was correlated with a pronounced increase in α subunit of the G protein G13. In this study we have investigated the effects of EGF on the transduction mechanisms of D2 receptors in GH4C1 cells transfected and permanently overexpressing the rat short D2 receptor. Activation of D2 receptors in these cells resulted in both inhibition of adenylyl cyclase and opening of potassium channels and inhibition of prolactin release by both cyclic AMP-dependent and independent mechanisms. Exposure of the transfected GH4C1 cells to EGF caused a dramatic decrease in the coupling efficiency of the D2 receptor to inhibit cyclic AMP-dependent responses, leaving its activity toward potassium channels unchanged. The EGF treatment led to the concomitant increase in the membrane content of G13 protein. These results suggest that the transmembrane signaling specificity of G protein-coupled receptors can be modulated by the relative amounts of different G proteins at the cell membrane.  相似文献   

8.
9.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

10.
Abstract: The δ-opioid receptor is known to regulate multiple effectors in various tissues. When expressed in human embryonic kidney 293 cells, the cloned δ-opioid receptor inhibited cyclic AMP (cAMP) accumulation in response to the δ-selective agonist [ d -Pen2, d -Pen5]enkephalin. The inhibitory response of [ d -Pen2, d -Pen5]enkephalin was dependent on the expression of the δ-opioid receptor and exhibited an EC50 of 1 n M . The receptor showed ligand selectivity and a pharmacological profile that is appropriate for the δ-opioid subtype. The inhibition was blocked by the opiate antagonist naloxone or by pretreatment of the cells with pertussis toxin. Cotransfection of the δ-opioid receptor with type II adenylyl cyclase and an activated mutant of αs converted the δ-opioid signal from inhibition to stimulation of cAMP accumulation. It is interesting that when transfected into Ltk fibroblasts, the cloned δ-opioid receptor was able to stimulate the formation of inositol phosphates (EC50 = 8 n M ). This response was sensitive to pertussis toxin. The opioid-mediated formation of inositol phosphates exhibited the same ligand selectivity as seen with the inhibition of cAMP accumulation. The ability of the δ-opioid receptor to couple to G proteins other than Gi was also examined. Cotransfection studies revealed that the δ-opioid receptor can utilize Gz to regulate cAMP accumulation and to stimulate the formation of inositol phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号