首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.  相似文献   

2.
Forest degradation succession often leads to changes in forest ecosystem functioning. Exactly how the decomposition of leaf litter is affected in a disturbed forest remains unknown. Therefore, in our study, we selected a primary Korean pine forest (PK) and a secondary broad‐leaved forest (SF) affected by clear‐cutting degradation, both in Northeast China. The aim was to explore the response to changes in the leaf litter decomposition converting PK to SF. The mixed litters of PK and SF were decomposed in situ (1 year). The proportion of remaining litter mass, main chemistry, and soil biotic and abiotic factors were assessed during decomposition, and then, we made an in‐depth analysis of the changes in the leaf litter decomposition. According to our results, leaf litter decomposition rate was significantly higher in the PK than that in the SF. Overall, the remaining percent mass of leaf litter''s main chemical quality in SF was higher than in PK, indicating that leaf litter chemical turnover in PK was relatively faster. PK had a significantly higher amount of total phospholipid fatty acids (PLFAs) than SF during decomposition. Based on multivariate regression trees, the forest type influenced the soil habitat factors related to leaf litter decomposition more than decomposition time. Structural equation modeling revealed that litter N was strongly and positively affecting litter decomposition, and the changes in actinomycetes PLFA biomass played a more important role among all the functional groups. Selected soil abiotic factors were indirectly driving litter decomposition through coupling with actinomycetes. This study provides evidence for the complex interactions between leaf litter substrate and soil physical–chemical properties in affecting litter decomposition via soil microorganisms.  相似文献   

3.
In tropical forest ecosystems leaf litter from a large variety of species enters the decomposer system, however, the impact of leaf litter diversity on the abundance and activity of soil organisms during decomposition is little known. We investigated the effect of leaf litter diversity and identity on microbial functions and the abundance of microarthropods in Ecuadorian tropical montane rainforests. We used litterbags filled with leaves of six native tree species (Cecropia andina, Dictyocaryum lamarckianum, Myrcia pubescens, Cavendishia zamorensis, Graffenrieda emarginata, and Clusia spp.) and incubated monocultures and all possible two‐ and four‐species combinations in the field for 6 and 12 months. Mass loss, microbial biomass, basal respiration, metabolic quotient, and the slope of microbial growth after glucose addition, as well as the abundance of microarthropods (Acari and Collembola), were measured at both sampling dates. Leaf litter diversity significantly increased mass loss after 6 months of exposure, but reduced microbial biomass after 12 months of exposure. Leaf litter species identity significantly changed both microbial activity and microarthropod abundance with species of high quality (low C‐to‐N ratio), such as C. andina, improving resource quality as indicated by lower metabolic quotient and higher abundance of microarthropods. Nonetheless, species of low quality, such as Clusia spp., also increased the abundance of Oribatida suggesting that leaf litter chemical composition alone is insufficient to explain variation in the abundances of soil microarthropods. Overall, the results provide evidence that decomposition and microbial biomass in litter respond to leaf litter diversity as well as litter identity (chemical and physical characteristics), while microarthropods respond only to litter identity but not litter diversity.  相似文献   

4.
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession.  相似文献   

5.
Biogenic Volatile Organic Compounds (BVOC) are largely accepted to contribute to both atmospheric chemistry and ecosystem functioning. While the forest canopy is recognized as a major source of BVOC, emissions from plant litter have scarcely been explored with just a couple of studies being focused on emission patterns over litter decomposition process. The aim of this study was to quantitatively and qualitatively characterize BVOC emissions (C1–C15) from Pinus halepensis litter, one of the major Mediterranean conifer species, over a 15‐month litter decomposition experiment. Senescent needles of P. halepensis were collected and placed in 42 litterbags where they underwent in situ decomposition. Litterbags were collected every 3 months and litter BVOC emissions were studied in vitro using both online (PTR‐ToF‐MS) and offline analyses (GC‐MS). Results showed a large diversity of BVOC (58 compounds detected), with a strong variation over time. Maximum total BVOC emissions were observed after 3 months of decomposition with 9.18 µg gDM −1 hr−1 mainly composed by terpene emissions (e.g., α‐pinene, terpinolene, β‐caryophyllene). At this stage, methanol, acetone, and acetic acid were the most important nonterpenic volatiles representing, respectively, up to 26%, 10%, and 26% of total emissions. This study gives an overview of the evolution of BVOC emissions from litter along with decomposition process and will thus contribute to better understand the dynamics and sources of BVOC emission in Mediterranean pine forests.  相似文献   

6.
1. Leaf litter decomposition is one of the most important ecosystem processes in streams. Recent studies suggest that facilitation, in which litter is processed by a succession of species with differing abilities and requirements, may be important in making the nutrients bound in litter available to the stream assemblage.
2. We predicted that stream invertebrates that feed on terrestrial leaf litter (shredders) and tadpoles would facilitate leaf litter decomposition by changing the quality of leaf material directly via physical contact or indirectly via nutrient release. We experimentally examined the ability of shredders and tadpoles to break down leaves, independently and together, in artificial streams beside a natural forest stream.
3. The decomposition rate was greater when shredders and tadpoles were together than was expected from rates in single-species treatments, indicating that facilitation occurred. This facilitation operated in one direction only: the rate of leaf breakdown by tadpoles was higher when leaves had been partly processed by shredders, but there was no similar effect when leaves previously occupied by tadpoles were processed by shredders. We did not detect facilitation caused by indirect nutrient release.
4. Shredders may have benefited tadpoles by roughening leaf surfaces, making them easier for the tadpoles to consume and enhancing leaf breakdown in the presence of both taxa. This indicates that the loss of a single species can have impacts on ecosystem functioning that go beyond the loss of its direct contribution.  相似文献   

7.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

8.
Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf‐associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4‐factorial design (= 6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution‐induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions.  相似文献   

9.
10.
Plant litter decomposition is mainly affected by litter properties and environmental factors, but the influence of terrain on litter decomposition is not well understood. We studied the effects of terrain on litter decomposition over a period of 12 months at six locations in a typical steppe ecoregion and measured the concomitant release of carbon (C), nitrogen (N), and phosphorus (P). The study site has two aspects, shaded and sunny, each aspect having three slopes: 15°, 30°, and 45°. The same mixed litter was used at each location to exclude the influence of litter quality variation. Results showed that soil temperature and moisture, solar radiation, and plant species diversity varied by terrain, which in turn, affected the k‐value (standardized total effects, 0.78, 0.12, 0.92, 0.23, respectively) and the release of C (0.72, –0.25, 0.83, 0.24, respectively), N (0.89, –0.45, 0.76, 0.40, respectively) and P (0.88, 0.77, 0.58, 0.57, respectively). K‐value and C release decreased with increasing slope on shaded aspect, while increased with increasing slope on sunny aspect. The release of N and P decreased with increasing slope on the shaded aspect. K‐value and C, N, and P release were significantly higher on shaded than that on sunny aspect at 15° and 30°, while at 45°, it was higher on sunny than on shaded aspect. The litter mass loss was slower on shaded 45° and sunny 15°. So moderate grazing or mowing could be used to reduce litter accumulation and accelerate litter decomposition on these terrains. Structural equation modeling indicated that soil temperature and solar radiation had the greatest influence on k‐value and C, N, and P release, and these two factors were directly related to soil moisture and plant species diversity. Overall, our results emphasize the need to consider terrain for litter decomposition in typical steppe ecoregions.  相似文献   

11.
Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change.  相似文献   

12.
Fatty acid profiles of biological specimens from epidemiological/clinical studies can serve as biomarkers to assess potential relationships between diet and chronic disease risk. However, data are limited regarding fatty acid stability in archived specimens following long-term storage, a variable that could affect result validity. Our objective was to determine the effect of prolonged storage at −80°C on the fatty acid profiles of serum cholesteryl ester (CE), triglyceride (TG), and phospholipid (PL) fractions. This was accomplished by determining the fatty acid profile of frozen, archived, previously unthawed serum samples from 22 subjects who participated in a controlled feeding trial. Initial analysis was performed after trial completion and the repeat analysis after 8–10 years of storage using GC. No significant differences were observed among the majority of fatty acids regardless of lipid fraction. Reliability coefficients were high for the fatty acid classes (saturated fatty acid : 0.70, MUFA : 0.90, PUFA : 0.80). When differences were identified, they were limited to low abundance fatty acids (≤1.5 mol%). These differences were quantitatively small and likely attributable to technical improvements in GC methodology rather than sample degradation. Thus, our data demonstrate that storage at −80°C up to 10 years does not significantly influence serum CE, TG, or PL fatty acid profiles.  相似文献   

13.
Lacking systematic evaluations in soil quality and microbial community recovery after different amendments addition limits optimization of amendments combination in coal mine soils. We performed a short‐term incubation experiment with a varying temperature over 12 weeks to assess the effects of three amendments (biochar: C; nitrogen fertilizer at three levels: N‐N1~N3; microbial agent at two levels: M‐M1~M2) based on C/N ratio (regulated by biochar and N level: 35:1, 25:1, 12.5:1) on mine soil properties and microbial community in the Qilian Mountains, China. Over the incubation period, soil pH and MBC/MBN were significantly lower than unamended treatment in N addition and C + M + N treatments, respectively. Soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and nitrogen (MBN) contents increased significantly in all amended treatments (p < .001). Higher AP, AK, MBC, MBN, and lower MBC/MBN were observed in N2‐treated soil (corresponding to C/N ratio of 25:1). Meanwhile, N2‐treated soil significantly increased species richness and diversity of soil bacterial community (p < .05). Principal coordinate analysis further showed that soil bacterial community compositions were significantly separated by N level. C‐M‐N treatments significantly increased the relative abundance (>1%) of the bacterial phyla Bacteroidetes and Firmicutes, and decreased the relative abundance of fungal phyla Chytridiomycota (p < .05). Redundancy analysis illustrated the importance of soil nutrients in explaining variability in bacterial community composition (74.73%) than fungal composition (35.0%). Our results indicated that N addition based on biochar and M can improve soil quality by neutralizing soil pH and increasing soil nutrient contents in short‐term, and the appropriate C/N ratio (25:1) can better promote microbial mass, richness, and diversity of soil bacterial community. Our study provided a new insight for achieving restoration of damaged habitats by changing microbial structure, diversity, and mass by regulating C/N ratio of amendments.  相似文献   

14.
1. Relationships between biodiversity and ecosystem function are of increasing interest, particularly in freshwater ecosystems where species losses are occurring at unprecedented rates. Amphibian declines have been associated with a loss of ecosystem function in neotropical streams, but little is known of the potential roles of stream‐dwelling tadpoles in leaf decomposition. Leaf litter is an important energy source to streams, and the breakdown of this material to fine particulate organic matter (FPOM) is a key ecosystem function. 2. We used mesocosms in a natural stream setting to quantify the effects of grazing tadpoles, shredding macroinvertebrates and a combination of the two on leaf decomposition and associated microbial activity. We measured respiration rates of decomposing leaves, particulate organic matter (POM) and leaf biofilm biomass and C : N : P ratios, and leaf area loss in 4 treatments: Control, tadpole only (TP), tadpole and shredding macroinvertebrates (TP + INV) and shredding macroinvertebrates only (INV). We hypothesised that tadpoles would enhance leaf decomposition by changing nutrient availability and stimulating microbial activity. 3. Respiration rates ranged from 3.1 to 6.0 mg O2 dry mass?1 h?1 and were significantly higher in the TP and TP + INV treatments than in the control. The TP + INV treatment had significantly higher POM in chambers than the control and INV treatments. The TP treatment had significantly lower leaf biofilm biomass than the control and INV treatments. 4. Tadpoles influenced the elemental balance of C and N in POM and leaf biofilm. In contrast to our prediction, molar C : N ratios were higher in the TP + INV treatment than in the control. Mean molar N : P ratios in POM were higher in the TP + INV treatment than in any other treatment. Leaf biofilm followed a similar pattern, but both TP and TP + INV had significantly higher N : P ratios than the control and INV treatments. Leaf area loss was greatest when tadpoles and invertebrates were together (TP + INV = 0.6% leaf area loss per mg organism) than separate (TP = 0.1%, INV = 3%), indicating facilitation. 5. Tadpoles indirectly affected leaf decomposition by influencing microbial communities and macroinvertebrate feeding. As such, ongoing amphibian declines may adversely affect a critical ecosystem function in freshwater habitats.  相似文献   

15.
1. We determined the rate of release and microbial uptake of dissolved organic carbon (DOC) leached from three components (leaves, bark and twigs) of river red gum ( Eucalyptus camaldulensis ) forest litter originating from different parts of a floodplain and under different oxygen levels.
2. Preliminary experiments showed that substantially more DOC was released from leaves than from bark or twigs; there was relatively little DOC release from coarse particulate matter or soil.
3. Both the amount of DOC released from each litter component and the amount metabolized by the microbial community were independent of position on the flood-plain or amount of oxygen available to microbes.
4. Although the bioavailability of DOC was independent of oxygen concentration, the microbial utilization of DOC under aerobic and anaerobic conditions differed. Under aerobic conditions, leaves were colonized by fungi, while bacteria were dominant under anoxic conditions.
5. Phospholipid fatty acid profiles of the microbial communities growing on leaf extracts showed that different microbial communities developed in each oxygen concentration treatment suggesting that, irrespective of flood conditions, a microbial community will develop to utilize a significant proportion of the DOC leached from litter.  相似文献   

16.
17.
Combined fatty acid esterification and lipolysis, termed lipid cycling, is an ATP‐consuming process that contributes to energy expenditure. Therefore, interventions that stimulate energy expenditure through lipid cycling are of great interest. Here we find that pharmacological and genetic inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes activates lipid cycling and energy expenditure, even in the absence of adrenergic stimulation. We show that the resulting increase in ATP demand elevates mitochondrial respiration coupled to ATP synthesis and fueled by lipid oxidation. We identify that glutamine consumption and the Malate‐Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). We thus demonstrate that energy expenditure through enhanced lipid cycling can be activated in brown adipocytes by decreasing mitochondrial pyruvate availability. We present a new mechanism to increase energy expenditure and fat oxidation in brown adipocytes, which does not require adrenergic stimulation of mitochondrial uncoupling.  相似文献   

18.
Lipids are major sources of metabolic energy in sharks and are closely linked to environmental conditions and biological cycles, such as those related to diet, reproduction and migration. In this study, we report for the first time, the total lipid content, lipid class composition and fatty acid profiles of muscle and liver tissue of white sharks, Carcharodon carcharias, of various lengths (1.5–3.9 m), sampled at two geographically separate areas off southern and eastern Australia. Muscle tissue was low in total lipid content (<0.9% wet mass, wm) and was dominated by phospholipids (>90% of total lipid) and polyunsaturated fatty acids (34±12% of total fatty acids). In contrast, liver was high in total lipid which varied between 51–81% wm and was dominated by triacylglycerols (>93%) and monounsaturated fatty acids (36±12%). With knowledge of total lipid and dry tissue mass, we estimated the energy density of muscle (18.4±0.1 kJ g−1 dm) and liver (34.1±3.2 kJ g−1 dm), demonstrating that white sharks have very high energetic requirements. High among-individual variation in these biochemical parameters and related trophic markers were observed, but were not related to any one biological or environmental factor. Signature fatty acid profiles suggest that white sharks over the size range examined are generalist predators with fish, elasmobranchs and mammalian blubber all contributing to the diet. The ecological applications and physiological influences of lipids in white sharks are discussed along with recommendations for future research, including the use of non-lethal sampling to examine the nutritional condition, energetics and dietary relationships among and between individuals. Such knowledge is fundamental to better understand the implications of environmental perturbations on this iconic and threatened species.  相似文献   

19.
The effect of the fungicide benomyl on growth and lipid composition ofTrichoderma koningii was investigated. The fungal growth was strongly inhibited in the presence of 1 and 2 mg/L benomyl while lower concentrations (0.1 and 0.5 mg/L) increased the fungal biomass through the stimulation of mycelial branching. The total lipid and the total neutral lipid were decreased, while the total phospholipid was enhanced in benomyl-treated mycelia. Important quantitative changes were detected in the proportions of fatty acids, neutral lipid fractions (decrease of free sterols, diacylglycerols and free fatty acids and increase of triacylglycerols and sterol esters) and phospholipid constiuents (decrease of phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine and increase of phosphatidylglycerol and phosphatidylinositol). The unsaturation index of the identified fatty acids was increased with increasing benomyl concentration.  相似文献   

20.
The final size and function of the adult central nervous system (CNS) are determined by neuronal lineages generated by neural stem cells (NSCs) in the developing brain. In Drosophila, NSCs called neuroblasts (NBs) reside within a specialised microenvironment called the glial niche. Here, we explore non‐autonomous glial regulation of NB proliferation. We show that lipid droplets (LDs) which reside within the glial niche are closely associated with the signalling molecule Hedgehog (Hh). Under physiological conditions, cortex glial Hh is autonomously required to sustain niche chamber formation. Upon FGF‐mediated cortex glial overgrowth, glial Hh non‐autonomously activates Hh signalling in the NBs, which in turn disrupts NB cell cycle progression and its ability to produce neurons. Glial Hh’s ability to signal to NB is further modulated by lipid storage regulator lipid storage droplet‐2 (Lsd‐2) and de novo lipogenesis gene fatty acid synthase 1 (Fasn1). Together, our data suggest that glial‐derived Hh modified by lipid metabolism mechanisms can affect the neighbouring NB’s ability to proliferate and produce neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号