首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
As carbon and energy flow through the soil food web they are depleted by the metabolic and production functions of organisms. To be sustained, a "long" food web, with a large biomass at higher trophic levels, must receive a high rate of rhizodeposition or detrital subsidy, or be top-populated by organisms of slow growth and long life cycle. Disturbed soil food webs tend to be bottom heavy and recalcitrant to restoration due to the slow growth of upper predator populations, physical and chemical constraints of the soil matrix, biological imbalances, and the relatively low mobility and invasion potential of soil organisms. The functional roles of nematodes, determined by their metabolic and behavioral activities, may be categorized as ecosystem services, disservices or effect-neutral. Among the disservices attributable to nematodes are overgrazing, which diminishes services of prey organisms, and plant-damaging herbivory, which reduces carbon fixation and availability to other organisms in the food web. Unfortunately, management to ameliorate potential disservices of certain nematodes results in unintended but long-lasting diminution of the services of others. Beneficial roles of nematodes may be enhanced by environmental stewardship that fosters greater biodiversity and, consequently, complementarity and continuity of their services.  相似文献   

2.
Soil animals live in complex and heterogeneous habitats including litter of various types but also microhabitats such as mosses, fungal mats and grass patches. Soil food webs have been separated into a slow fungal and a fast bacterial energy channel. Bacterial-feeding nematodes are an important component of the bacterial energy channel by consuming bacteria and forming prey for higher trophic levels such as soil microarthropods. Investigating the role of nematodes as prey for higher trophic level consumers has been hampered by methodological problems related to their small body size and lack in skeletal structures which can be traced in the gut of consumers. Recent studies using molecular gut content analyses suggest that nematodes form major prey of soil microarthropods including those previously assumed to live as detritivores. Using molecular markers we traced nematode prey in fourteen abundant soil microarthropod taxa of Mesostigmata and Oribatida (both Acari) from three different microhabitats (litter, grass and moss). Consumption of nematodes varied between mite species indicating that trophic niche variation contributes to the high diversity of microarthropods in deciduous forests. Further, consumption of nematodes by Mesostigmata (but not Oribatida) differed between microhabitats indicating that trophic niches vary with habitat characteristics. Overall, the results suggest that free-living bacterial-feeding nematodes form important prey for soil microarthropods including those previously assumed to live as detritivores.  相似文献   

3.
Due to climate warming, many plant species shift ranges towards higher latitudes. Plants can disperse faster than most soil biota, however, little is known about how range‐expanding plants in the new range will establish interactions with the resident soil food web. In this paper we examine how the soil nematode community from the new range responds to range‐expanding plant species compared to related natives. We focused on nematodes, because they are important components in various trophic levels of the soil food web, some feeding on plant roots, others on microbes or on invertebrates. We expected that range expanding plant species have fewer root‐feeding nematodes, as predicted by enemy release hypothesis. We therefore expected that range expanders affect the taxonomic and functional composition of the nematode community, but that these effects would diminish with increasing trophic position of nematodes in the soil food web. We exposed six range expanders (including three intercontinental exotics) and nine related native plant species to soil from the invaded range and show that range expanders on average had fewer root‐feeding nematodes per unit root biomass than related natives. The range expanders showed resistance against rather than tolerance for root‐feeding nematodes from the new range. On the other hand, the overall taxonomic and functional nematode community composition was influenced by plant species rather than by plant origin. The plant identity effects declined with trophic position of nematodes in the soil food web, as plant feeders were influenced more than other feeding guilds. We conclude that range‐expanding plant species can have fewer root‐feeding nematodes per unit root biomass than related natives, but that the taxonomic and functional nematode community composition is determined more by plant identity than by plant origin. Plant species identity effects decreased with trophic position of nematodes in the soil food web.  相似文献   

4.
C Wei  H Zheng  Q Li  X Lü  Q Yu  H Zhang  Q Chen  N He  P Kardol  W Liang  X Han 《PloS one》2012,7(8):e43384
Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in semiarid grassland on soil nematode trophic groups, and the cascading effects in the detrital soil food web.  相似文献   

5.
We studied the role of nematode predation in the functioning of detrital food webs assembled in microcosms. The microcosms contained defaunated humus and litter materials, a diverse microbial community with bacteria, fungi and protozoa, and a birch (Betula pendula) seedling infected with mycorrhizal fungi. Different levels of top-down control upon microbivorous nematodes were set up by assembling food webs either without predators, or in combinations with a specialist and a non-specialist predatory mite (Mesostigmata). The nematode community was composed of either (1) three species of bacterivorous, or (2) three species of fungivorous nematodes or (3) both groups together. After two growing periods for the birch (38 weeks), the microcosms were destructively sampled for animal and microbial biomasses, concentration of mineral N in the soil, plant biomass and plant N concentration. The specialist predator reduced biomasses of both bacterial- and fungal-feeding nematodes by more than 50%, whereas the non-specialist predator weakly increased the biomass of fungivorous nematodes. Thus, under high predation pressure, the biomass of microbivores changed as predicted by trophic dynamic models assuming strong top-down control and uniformly behaving trophic levels. Despite this, microbial biomass was unaffected by the predators. However, microbial respiration increased slightly in the presence of predators. Assuming that microbial respiration correlates with microbial productivity, the increase in microbial respiration indicates a cascading productivity regulation. The composition of the microbivore community had only a minor effect on the outcome of the top-down control on microbes. The >50% reduction in nematode biomass and respiration coincided with <16% increase in microbial respiration and did not affect microbial biomass. Presence of the specialist predator slightly reduced soil NH+ 4 concentration in communities with fungivore nematodes but plant growth and N uptake remained unchanged. Thus, the structure of the community only weakly controlled nutrient mineralisation. Received: 18 May 1998 / Accepted: 3 May 1999  相似文献   

6.
Nematode Indicators of Organic Enrichment   总被引:2,自引:0,他引:2  
The organisms of the soil food web, dependent on resources from plants or on amendment from other sources, respond characteristically to enrichment of their environment by organic matter. Primary consumers of the incoming substrate, including bacteria, fungi, plant-feeding nematodes, annelids, and some microarthropods, are entry-level indicators of enrichment. However, the quantification of abundance and biomass of this diverse group, as an indicator of resource status, requires a plethora of extraction and assessment techniques. Soluble organic compounds are absorbed by bacteria and fungi, while fungi also degrade more recalcitrant sources. These organisms are potential indicators of the nature of incoming substrate, but current methods of biomass determination do not reliably indicate their community composition. Guilds of nematodes that feed on bacteria (e.g., Rhabditidae, Panagrolaimidae) and fungi (e.g., Aphelenchidae, Aphelenchoididae) are responsive to changes in abundance of their food. Through direct herbivory, plant-feeding nematodes (e.g., many species of Tylenchina) also contribute to food web resources. Thus, analysis of the nematode community of a single sample provides indication of carbon flow through an important herbivore channel and through channels mediated by bacteria and fungi. Some nematode guilds are more responsive than others to resource enrichment. Generally, those bacterivores with short lifecycles and high reproductive potential (e.g., Rhabditidae) most closely mirror the bloom of bacteria or respond most rapidly to active plant growth. The feeding habits of some groups remain unclear. For example, nematodes of the Tylenchidae may constitute 30% or more of the individuals in a soil sample; further study is necessary to determine which resource channels they portray and the appropriate level of taxonomic resolution for this group. A graphic representation of the relative biomass of bacterivorous, fungivorous, and herbivorous nematodes provides a useful tool for assessing the importance of the bacterial, fungal, and plant resource channels in an extant food web.  相似文献   

7.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

8.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

9.
线虫群落在土壤生态系统物质循环和能量流动过程中起着重要的作用。本研究以宁夏南部山区3种苜蓿-作物种植方式[苜蓿连作(A-A)、苜蓿-玉米轮作(A-C)、苜蓿-马铃薯轮作(A-P)]为对象,探讨不同种植方式下土壤理化性质、线虫群落组成结构及代谢足迹特征,评价黄土高原半干旱区苜蓿-作物种植方式对土壤食物网结构和功能的影响。结果表明: 1)与苜蓿连作相比,苜蓿-玉米和苜蓿-马铃薯轮作方式下土壤有机碳含量分别增加了4.6%、7.4%,全氮含量分别增加了4.0%、5.2%,土壤微生物生物量碳和氮也有显著提高;2)在苜蓿连作方式下,线虫总多度为211 条·100 g-1干土,植食线虫为优势营养类群(35.7%),而在苜蓿-玉米和苜蓿-马铃薯轮作方式下,土壤线虫总多度较苜蓿连作有所增加(分别增加49.5%、93.7%),捕-杂食线虫成为优势营养类群(所占比例分别为45.7%、37.6%);3)相较于苜蓿连作,苜蓿-作物轮作方式下,植物寄生线虫指数(PPI)显著降低,表明植物寄生线虫在土壤食物网中的危害减轻;而线虫通路指数(NCR)有所增加,表明苜蓿-作物轮作方式下,土壤有机质分解过程中细菌分解作用进一步增强;4)苜蓿-作物轮作方式下,土壤线虫成熟度指数(MI)及其复合足迹、富集足迹、结构足迹均显著提高,土壤线虫的生产力和代谢活性显著增强,线虫群落的结构和功能更为成熟稳定。研究表明,相比苜蓿连作,苜蓿-作物轮作改善了土壤养分状况,使得土壤食物网的资源输入和能量利用效率均有所增加,受干扰程度显著降低,土壤生态系统更为稳定健康,因而有利于农业的可持续发展。  相似文献   

10.
Climate change is predicted to increase climate variability and frequency of extreme events such as drought, straining water resources in agricultural systems. Thus, limited irrigation strategies and soil amendments are being explored to conserve water in crop production. Biochar is the recalcitrant, carbon‐based coproduct of biomass pyrolysis during bioenergy production. When used as a soil amendment, biochar can increase soil water retention while enhancing soil properties and stimulating food webs. We investigated the effects of coupled biochar amendment and limited irrigation on belowground food web structure and function in an irrigated maize agroecosystem. We hypothesized that soil biota biomass and activity would decrease with limited irrigation and increase with biochar amendment and that biochar amendment would mitigate the impact of limited irrigation on the soil food web. One year after biochar addition, we extracted, identified, and estimated the biomass of taxonomic groups of soil biota (e.g., bacteria, fungi, protozoa, nematodes, and arthropods) from wood‐derived biochar‐amended (30 Mg ha?1) and nonamended soils under maize with limited (two‐thirds of full) and full irrigation. We modeled structural and functional properties of the soil food web. Neither biochar amendment nor limited irrigation had a significant effect on biomass of the soil biota groups. Modeled soil respiration and nitrogen mineralization fluxes were not different between treatments. A comparison of the structure and function of the agroecosystem soil food web and a nearby native grassland revealed that in this temperate system, the negative impact of long‐term conventional agricultural management outweighed the impact of limited irrigation. One year of biochar amendment did not mitigate nor further contribute to the negative effects of historical agricultural management.  相似文献   

11.
Detritus, trophic dynamics and biodiversity   总被引:11,自引:1,他引:10  
Traditional approaches to the study of food webs emphasize the transfer of local primary productivity in the form of living plant organic matter across trophic levels. However, dead organic matter, or detritus, a common feature of most ecosystems plays a frequently overlooked role as a dynamic heterogeneous resource and habitat for many species. We develop an integrative framework for understanding the impact of detritus that emphasizes the ontogeny and heterogeneity of detritus and the various ways that explicit inclusion of detrital dynamics alters generalizations about the structure and functioning of food webs. Through its influences on food web composition and dynamics, detritus often increases system stability and persistence, having substantial effects on trophic structure and biodiversity. Inclusion of detrital heterogeneity in models of food web dynamics is an essential new direction for ecological research.  相似文献   

12.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

13.
Belowground herbivores can exert important controls on the composition of natural plant communities. Until now, relatively few studies have investigated which factors may control the abundance of belowground herbivores. In Dutch coastal foredunes, the root-feeding nematode Tylenchorhynchus ventralis is capable of reducing the performance of the dominant grass Ammophila arenaria (Marram grass). However, field surveys show that populations of this nematode usually are controlled to nondamaging densities, but the control mechanism is unknown. In the present study, we first established that T. ventralis populations are top-down controlled by soil biota. Then, selective removal of soil fauna suggested that soil microorganisms play an important role in controlling T. ventralis. This result was confirmed by an experiment where selective inoculation of microarthropods, nematodes and microbes together with T. ventralis into sterilized dune soil resulted in nematode control when microbes were present. Adding nematodes had some effect, whereas microarthropods did not have a significant effect on T. ventralis. Our results have important implications for the appreciation of herbivore controls in natural soils. Soil food web models assume that herbivorous nematodes are controlled by predaceous invertebrates, whereas many biological control studies focus on managing nematode abundance by soil microorganisms. We propose that soil microorganisms play a more important role than do carnivorous soil invertebrates in the top-down control of herbivorous ectoparasitic nematodes in natural ecosystems. This is opposite to many studies on factors controlling root-feeding insects, which are supposed to be controlled by carnivorous invertebrates, parasitoids, or entomopathogenic nematodes. Our conclusion is that the ectoparasitic nematode T. ventralis is potentially able to limit productivity of the dune grass A. arenaria but that soil organisms, mostly microorganisms, usually prevent the development of growth-reducing population densities.  相似文献   

14.
Apart from relatively well‐studied aboveground effects, invasive plant species will also impact the soil food web. So far, most research has been focusing on primary decomposers, while studies on effects at higher trophic levels are relatively scarce. Giant goldenrod Solidago gigantea, native to North America, is a widespread and common invasive species in most European countries. We investigated its impact on plant communities and on multiple trophic levels of the soil food web in two contrasting habitats: riparian zones and semi‐natural grasslands. In 30 pairs of invaded and uninvaded plots, floristic composition, pH, fungal biomass and the densities of 11 nematode taxa were determined by using a quantitative PCR‐based method. In the two habitats, the invader outcompeted both rare and dominant plant species. Belowground, S. gigantea invasion reduced pH, increased overall fungal biomass as well as the density of a single lineage of fungivorous nematodes, the family Aphelenchoididae. The densities of two other, phylogenetically distinct lineages of fungivorous nematodes, Aphelenchidae and Diphtherophoridae, were unaffected by the local increase in fungal biomass. Apparently this plant species induces a local asymmetric boost of the fungal community, and only Aphelenchoididae were able to benefit from this invader‐induced change. The alternative explanation – the results are explained by a subtle, S. gigantea‐induced 0.1–0.2 units decrease of pH – seems unlikely, as pH optima for nematode taxa are relatively broad. Thus, apart from readily observable aboveground effects, the invasive plant species S. gigantea affects fungal biomass as well as a specific part of the fungivorous nematode community in a soil type‐independent manner.  相似文献   

15.
Nutrient‐poor grassland on a silty clay loam overlying calcareous debris was exposed to elevated CO2 for six growing seasons. The CO2 exchange and productivity were persistently increased throughout the experiment, suggesting increases in soil C inputs. At the same time, elevated CO2 lead to increased soil moisture due to reduced evapotransporation. Measurements related to soil microflora did not indicate increased soil C fluxes under elevated CO2. Microbial biomass, soil basal respiration, and the metabolic quotient for CO2 (qCO2) were not altered significantly. PLFA analysis indicated no significant shift in the ratio of fungi to bacteria. 0.5 m KCl extractable organic C and N, indicators of changed DOC and DON concentrations, also remained unaltered. Microbial grazer populations (protozoa, bacterivorous and fungivorous nematodes, acari and collembola) and root feeding nematodes were not affected by elevated CO2. However, total nematode numbers averaged slightly lower under elevated CO2 (?16%, ns) and nematode mass was significantly reduced (?43%, P = 0.06). This reduction reflected a reduction in large‐diameter nematodes classified as omnivorous and predacious. Elevated CO2 resulted in a shift towards smaller aggregate sizes at both micro‐ and macro‐aggregate scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate sizes result in reduced pore neck diameters. Locomotion of large‐diameter nematodes depends on the presence of large enough pores; the reduction in aggregate sizes under elevated CO2 may therefore account for the decrease in large nematodes. These animals are relatively high up the soil food web; this decline could therefore trigger top‐down effects on the soil food web. The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants and surface litter increased at elevated CO2, but N in soil organic matter and microbes remained unaltered. Nitrogen mineralization increased markedly, but microbial N did not differ between CO2 treatments, indicating that net N immobilization rates were unaltered. In summary, this study did not provide evidence that soils and soil microbial communities are affected by increased soil C inputs under elevated CO2. On the contrary, available data (13C tracer data, minirhizotron observations, root ingrowth cores) suggests that soil C inputs did not increase substantially. However, we provide first evidence that elevated CO2 can reduce soil aggregation at the scale from µ m to mm scale, and that this can affect soil microfaunal populations.  相似文献   

16.
Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or appropriate controls. In order to further examine the relation between plant species diversity and the soil food web, we conducted a three-year semi-field experiment in which eight plant species (4 forb and 4 grass species) were grown in monocultures and mixtures of two, four and eight plant species. In addition there were communities with 16 plant species. We analyzed the abundance and identity of the nematodes in soil and roots, including feeding groups from various trophic levels (primary and secondary consumers, carnivores, and omnivores) in the soil food web.
Plant species diversity and plant identity affected the diversity of nematodes. The effect of plant diversity was attributed to the complementarity in resource quality of the component plant species rather than to an increase in total resource quantity. The nematode diversity varied more between the different plant species than between different levels of plant species diversity, so that plant identity is more important than plant diversity. Nevertheless the nematode diversity in plant mixtures was higher than in any of the plant monocultures, due to the reduced dominance of the most abundant nematode taxa in the mixed plant communities. Plant species identity affected the abundances of the lower trophic consumer levels more than the higher trophic levels of nematodes. Plant species diversity and plant biomass did not affect nematode abundance. Our results, therefore, support the hypothesis that resource quality is more important than resource quantity for the diversity of soil food web components and that plant species identity is more important than plant diversity per se.  相似文献   

17.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

18.
Soil protozoa are characterized by their ability to produce cysts, which allows them to survive unfavorable conditions (e.g., desiccation) for extended periods. Under favorable conditions, they may rapidly excyst and begin feeding, but even under optimal conditions, a large proportion of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable for mathematical modeling. Following the addition of fresh organic material, bacterial numbers increased more than 1,400-fold. There was a temporary increase in the number of active ciliates, followed by a rapid decline, although the size of the bacterial prey populations remained high. During this initial burst of ciliate growth, the population of cystic ciliates increased 100-fold. We suggest that internal population regulation is the major factor governing ciliate encystment and that the rate of encystment depends on ciliate density. This model provides a quantitative explanation of ciliatostasis and can explain why protozoan growth in soil is less than that in aquatic systems. Internally governed encystment may be an essential adaptation to an unpredictable environment in which individual protozoa cannot predict when the soil will dry out and will survive desiccation only if they have encysted in time.  相似文献   

19.
The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experi-mental Station of Ecology, Chinese Academy of Sciences was examined using geostatistics combined with classic statistics. Results showed that the soil pH value had a negative effect on plant-parasites in both bare and fallow plots; the mean number of total nematodes was significantly higher in fallow plots than in bare plots, which was 1485.3 and 464.0 individuals per 100 g dry soil in fallow and bare plots, respectively; the nugget (C0)/sill (C0+C) ratio of total nematodes, plant-parasites and bacterivores were lower in fallow plots (27.3%-45.6%) than in bare plots (49.5%-100%); the spatial distribution of total nematodes and trophic groups was found to be different between fallow and bare plots, which indicated that vegetation coverage had an effect on soil nematodes.  相似文献   

20.
Mechanistic understanding of consumer-resource dynamics is critical to predicting the effects of global change on ecosystem structure, function and services. Such understanding is severely limited by mechanistic models' inability to reproduce the dynamics of multiple populations interacting in the field. We surpass this limitation here by extending general consumer-resource network theory to the complex dynamics of a specific ecosystem comprised by the seasonal biomass and production patterns in a pelagic food web of a large, well-studied lake. We parameterised our allometric trophic network model of 24 guilds and 107 feeding relationships using the lake's food web structure, initial spring biomasses and body-masses. Adding activity respiration, the detrital loop, minimal abiotic forcing, prey resistance and several empirically observed rates substantially increased the model's fit to the observed seasonal dynamics and the size-abundance distribution. This process illuminates a promising approach towards improving food-web theory and dynamic models of specific habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号