首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
Fusarium graminearum and Fusarium sporotrichioides produce the trichothecene mycotoxins 15-acetyldeoxynivalenol and T-2 toxin, respectively. In both species, disruption of the P450 monooxygenase-encoding gene, Tri4, blocks production of the mycotoxins and leads to the accumulation of the trichothecene precursor trichodiene. To further characterize its function, the F. graminearum Tri4 (FgTri4) was heterologously expressed in the trichothecene-nonproducing species Fusarium verticillioides. Transgenic F. verticillioides carrying the FgTri4 converted exogenous trichodiene to the trichothecene biosynthetic intermediates isotrichodermin and trichothecene. Conversion of trichodiene to isotrichodermin requires seven biochemical steps. The fifth and sixth steps can occur nonenzymatically. Precursor feeding studies done in the current study indicate that wild-type F. verticillioides has the enzymatic activity necessary to carry out the seventh step, the C-3 acetylation of isotrichodermol to form isotrichodermin. Together, the results of this study indicate that the Tri4 protein catalyzes the remaining four steps and is therefore a multifunctional monooxygenase required for trichothecene biosynthesis.  相似文献   

2.
The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of small grains, such as wheat and barley, in the United States. New strategies to mitigate the threat of DON need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that are able to modify DON and reduce its toxicity. Recent work has highlighted differences in the activities of TRI101 from two different species of Fusarium (F. graminearum and F. sporotrichioides), but little is known about the relative activities of TRI101/TRI201 enzymes produced by other species of Fusarium. We cloned TRI101 or TRI201 genes from seven different species of Fusarium and found genetic identity between sequences ranging from 66% to 98%. In vitro feeding studies using transformed yeast showed that all of the TRI101/TRI201 enzymes tested were able to acetylate DON; conversion of DON to 3-acetyl-deoxynivalenol (3ADON) ranged from 50.5% to 100.0%, depending on the Fusarium species from which the gene originated. A time course assay showed that the rate of acetylation varied from species to species, with the gene from F. sporotrichioides having the lowest rate. Steady-state kinetic assays using seven purified enzymes produced catalytic efficiencies for DON acetylation ranging from 6.8 × 10(4) M(-1)·s(-1) to 4.7 × 10(6) M(-1)·s(-1). Thermostability measurements for the seven orthologs ranged from 37.1°C to 43.2°C. Extended sequence analysis of portions of TRI101/TRI201 from 31 species of Fusarium (including known trichothecene producers and nonproducers) suggested that other members of the genus may contain functional TRI101/TRI201 genes, some with the potential to outperform those evaluated in the present study.  相似文献   

3.
禾谷镰刀菌Tri101基因编码的单端孢酶烯3-O-乙酰转移酶可通过加乙酰基的形式使禾谷镰刀菌产生的单族毒素(如DON)转变为较低的毒性。本研究利用RT-PCR技术从禾谷镰刀菌0623中扩增并克隆了Tri101基因的cDNA片段,测序结果表明,Tri101基因核苷酸序列阅读框架全长1356bp(GenBank序列号:GQ907236),编码451个氨基酸的多肽,推测分子量为49.45kD,等电点为5.14。氨基酸序列同源性比对结果表明,它与Kimura报道的禾谷镰刀菌Tri101氨基酸序列同源性最高,为99.56%,与其它13种镰刀菌的Tri101氨基酸序列的同源性分别为97.91%-75.68%。系统进化树分析结果表明,Fusarium graminearium0623与Fusarium sporotrichioides属于同一进化枝且与Fusarium asiaticum有较近的亲缘关系,而与F.oxysporum、F.moniliforme、F.nygamai、F.nisikadoi和F.decemcellulare的亲缘关系较远。  相似文献   

4.
Fusarium graminearum Z-3639 and F. sporotrichioides NRRL3299 produce the trichothecene mycotoxins 15-acetyldeoxynivalenol and T-2 toxin, respectively. These toxins differ in oxygenation at C-4, C-7, and C-8. In F. sporotrichioides, Tri1 (FsTri1) controls C-8 hydroxylation. To determine the function of an apparent F. graminearum Tri1 (FgTri1) homolog, both FsTri1 and FgTri1 genes were heterologously expressed in the trichothecene-nonproducing species F. verticillioides by fusing the Tri1 coding regions to the promoter of the fumonisin biosynthetic gene FUM8. FsTri1 and FgTri1 have been partially characterized by disruption analysis, and the results from these analyses suggest that FsTri1 most likely has a single function but that FgTri1 may have two functions. Transgenic F. verticillioides carrying the FsTri1 (FvF8FsTri1) converted exogenous isotrichodermin and calonectrin to 8-hydroxyisotrichodermin and 8-hydroxycalonectrin, respectively. Transgenic F. verticillioides carrying FgTri1 (FvF8FgTri1) converted isotrichodermin to a mixture of 7-hydroxyisotrichodermin and 8-hydroxyisotrichodermin but converted calonectrin to a mixture of 7-hydroxycalonectrin, 8-hydroxycalonectrin, and 3,15-diacetyldeoxynivalenol. A fourth compound, 7,8-dihydroxycalonectrin, was identified in large-scale F. verticillioides FvF8FgTri1 cultures fed isotrichodermin. Our results indicate that FgTri1 controls both C-7 and C-8 hydroxylation but that FsTri1 controls only C-8 hydroxylation. Our studies also demonstrate that F. verticillioides can metabolize some trichothecenes by adding an acetyl group to C-3 or by removing acetyl groups from C-4 or C-15. In addition, wild-type F. verticillioides can convert 7,8-dihydroxycalonectrin to 3,15-diacetyldeoxynivalenol.  相似文献   

5.
In the biosynthesis of Fusarium trichothecenes, the C-3 hydroxyl group of isotrichodermol must be acetylated by TRI101 for subsequent pathway genes to function. Despite the importance of this 3-O-acetylation step in biosynthesis, Tri101 is both physically and evolutionarily unrelated to other Tri genes in the trichothecene gene cluster. To gain insight into the evolutionary history of the cluster, we purified recombinant TRI3 (rTRI3), one of the two cluster gene-encoded trichothecene O-acetyltransferases, and examined to determine whether this 15-O-acetyltransferase can add an acetyl to the C-3 hydroxyl group of isotrichodermol. When a high concentration of rTRI3 was used in the assay (final concentration, 50 microM), we observed 3-O-acetylation activity against isotrichodermol that was more than 10(5) times less efficient than the known 15-O-acetylation activity against 15-deacetylcalonectrin. The rTRI3 protein also exhibited 4-O-acetylation activity when nivalenol was used as a substrate; in addition to 15-acetylnivalenol, di-acetylated derivatives, 4,15-diacetylnivalenol, and, to a lesser extent, 3,15-diacetylnivalenol, were also detected at high enzyme concentrations. The significance of the trace trichothecene 3-O-acetyltransferase activity detected in rTRI3 is discussed in relation to the evolution of the trichothecene gene cluster.  相似文献   

6.
The biosyntheses of both macrocyclic trichothecenes in Myrothecium roridum and simple trichothecenes in Fusarium species begin with the cyclization of farnesyl pyrophosphate to form the sesquiterpene hydrocarbon trichodiene. A previous study showed that Myrothecium has a cluster of 3 genes that are homologous with Fusarium trichothecene genes: Tri4, a P450 oxygenase; Tri5, the sesquiterpene cyclase; and Tri6, a zinc-finger regulatory gene. Fusarium graminearum Tri4 (FgTri4) and M. roridum MrTri4 (MrTri4) have 66.9% identity. In this study, MrTri4 was expressed in Fusarium verticillioides. Liquid cultures of transformant strains expressing MrTri4 converted exogenous trichodiene to isotrichodiol, indicating that MrTri4 controls 3 oxygenation steps and that the product of MrTRI4 is isotrichodiol.  相似文献   

7.
8.
Fusarium Tri4 encodes a cytochrome P450 monooxygenase (CYP) for hydroxylation at C-2 of the first committed intermediate trichodiene (TDN) in the biosynthesis of trichothecenes. To examine whether this CYP further participates in subsequent oxygenation steps leading to isotrichotriol (4), we engineered Saccharomyces cerevisiae for de novo production of the early intermediates by introducing cDNAs of Fusarium graminearum Tri5 (FgTri5 encoding TDN synthase) and Tri4 (FgTri4). From a culture of the engineered yeast grown on induction medium (final pH 2.7), we identified two intermediates, 2alpha-hydroxytrichodiene (1) and 12,13-epoxy-9,10-trichoene-2alpha-ol (2), and a small amount of non-Fusarium trichothecene 12,13-epoxytrichothec-9-ene (EPT). Other intermediates isotrichodiol (3) and 4 were identified in the transgenic yeasts grown on phosphate-buffered induction medium (final pH 5.5-6.0). When Trichothecium roseum Tri4 (TrTri4) was used in place of FgTri4, 4 was not detected in the culture. The three intermediates, 1, 2, and 3, were converted to 4,15-diacetylnivalenol (4,15-diANIV) when fed to a toxin-deficient mutant of F. graminearum with the FgTri4+ genetic background (viz., by introducing a FgTri5- mutation), but were not metabolized by an FgTri4- mutant. These results provide unambiguous evidence that FgTri4 encodes a multifunctional CYP for epoxidation at C-12,13, hydroxylation at C-11, and hydroxylation at C-3 in addition to hydroxylation at C-2.  相似文献   

9.
Trichothecenes are a large family of sesquiterpenoid secondary metabolites of Fusarium species (e.g., F. graminearum) and other molds. They are major mycotoxins that can cause serious problems when consumed via contaminated cereal grains. In the past 20 years, an outline of the trichothecene biosynthetic pathway has been established based on the results of precursor feeding experiments and blocked mutant analyses. Following the isolation of the pathway gene Tri5 encoding the first committed enzyme trichodiene synthase, 10 biosynthesis genes (Tri genes; two regulatory genes, seven pathway genes, and one transporter gene) were functionally identified in the Tri5 gene cluster. At least three pathway genes, Tri101 (separated alone), and Tri1 and Tri16 (located in the Tri1-Tri16 two-gene cluster), were found outside of the Tri5 gene cluster. In this review, we summarize the current understanding of the pathways of biosynthesis, the functions of cloned Tri genes, and the evolution of Tri genes, focusing on Fusarium species.  相似文献   

10.
11.
12.
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F. sporotrichioides homolog of the Fusarium graminearum TRI101 gene. Mutants of F. sporotrichioides NRRL 3299 produced by disruption of TRI101 were altered in their abilities to synthesize T-2 toxin and accumulated isotrichodermol and small amounts of 3, 15-didecalonectrin and 3-decalonectrin, trichothecenes that are not observed in cultures of the parent strain. Our results indicate that TRI101 converts isotrichodermol to isotrichodermin and is required for the biosynthesis of T-2 toxin.  相似文献   

13.
The ability to rapidly distinguish trichothecene chemotypes in a given species/population of the genus Fusarium is important due to significant differences in the toxicity of these secondary metabolites. A multiplex PCR assay, based on primer pairs derived from the Tri3, Tri5 and Tri7 genes of the trichothecene gene cluster was established for the identification of the different chemotypes among Fusarium graminearum, F. culmorum and F. cerealis. Using the selected primers, specific amplification products of 625, 354 and 708 bp were obtained from Fusarium isolates producing nivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol, respectively. Moreover, the multiplex PCR was successfully used to identify the chemotype of the Fusarium species contaminating wheat kernels. Four picograms of fungal DNA were found to be necessary to obtain a visible amplification product.  相似文献   

14.
We report for the first time the complete structure and sequence of the trichothecene biosynthesis gene cluster (i.e. Tri5-cluster) from Fusarium graminearum F15, a strain that produces 3-acetyldeoxynivalenol (3-ADON). A putative tyrosinase and polysaccharide deacetylase gene flank the Tri5-cluster: the number of pathway genes between them is less than half the total number of steps necessary for 3-ADON biosynthesis. In comparison with partial Tri5-cluster sequences of strains with 15-acetyldeoxynivalenol and 4-acetylnivalenol chemotypes, the Tri5-cluster from strain F15 contains three genes that are apparently unnecessary for the biosynthesis of 3-ADON (i.e. Tri8 and Tri3, which are expressed, and pseudo-Tri13, which is not expressed). In addition, the Tri7 gene was missing from the cluster. Recombinant TRI3 protein showed limited trichothecene C-15 acetylase activity. In contrast, recombinant TRI8 protein displayed no C-3 deacetylase activity, suggesting that the loss or alteration of function contribute directly to the chemotype difference.  相似文献   

15.
Certain Fusarium species cause head blight of wheat and other small grains worldwide and produce trichothecene mycotoxins. These mycotoxins can induce toxicoses in animals and humans and can contribute to the ability of some fusaria to cause plant disease. Production of the trichothecene 3-acetyldeoxynivalenol (3-ADON) versus 15-acetyldeoxynivalenol (15-ADON) is an important phenotypic difference within and among some Fusarium species. However, until now, the genetic basis for this difference in chemotype has not been identified. Here, we identified consistent DNA sequence differences in the coding region of the trichothecene biosynthetic gene TRI8 in 3-ADON and 15-ADON strains. Functional analyses of the TRI8 enzyme (Tri8) in F. graminearum, the predominant cause of wheat head blight in North America and Europe, revealed that Tri8 from 3-ADON strains catalyzes deacetylation of the trichothecene biosynthetic intermediate 3,15-diacetyldeoxynivalenol at carbon 15 to yield 3-ADON, whereas Tri8 from 15-ADON strains catalyzes deacetylation of 3,15-diacetyldeoxynivalenol at carbon 3 to yield 15-ADON. Fusarium strains that produce the trichothecene nivalenol have a Tri8 that functions like that in 15-ADON strains. TRI3, which encodes a trichothecene carbon 15 acetyltransferase, was found to be functional in all three chemotypes. Together, our data indicate that differential activity of Tri8 determines the 3-ADON and 15-ADON chemotypes in Fusarium.  相似文献   

16.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

17.
Fusarium head blight (FHB) is a devastating disease of small grain cereal crops caused by the necrotrophic pathogen Fusarium graminearum and Fusarium culmorum. These fungi produce the trichothecene mycotoxin deoxynivalenol (DON) and its derivatives, which enhance the disease development during their interactions with host plants. For the self-protection, the trichothecene producer Fusarium species have Tri101 encoding trichothecene 3-O-acetyltransferase. Although transgenic expression of Tri101 significantly reduced inhibitory action of DON on tobacco plants, there are several conflicting observations regarding the phytotoxicity of 3-acetyldeoxynivalenol (3-ADON) to cereal plants; 3-ADON was reported to be highly phytotoxic to wheat at low concentrations. To examine whether cereal plants show sufficient resistance to 3-ADON, we generated transgenic rice plants with stable expression and inheritance of Tri101. While root growth of wild-type rice plants was severely inhibited by DON in the medium, this fungal toxin was not phytotoxic to the transgenic lines that showed trichothecene 3-O-acetylation activity. This is the first report demonstrating the DON acetylase activity and DON-resistant phenotype of cereal plants expressing the fungal gene. S. Ohsato and T. Ochiai-Fukuda should be considered as joint first authors.  相似文献   

18.
19.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

20.
Fusarium head blight caused by Fusarium graminearum is a disease of cereal crops that not only reduces crop yield and quality but also results in contamination with trichothecenes such as nivalenol and deoxynivalenol (DON). To analyze the trichothecene induction mechanism, effects of 12 carbon sources on the production of DON and 3-acetyldexynivalenol (3ADON) were examined in liquid cultures incubated with nine strains of 3ADON-producing F. graminearum. Significantly high levels of trichothecene (DON and 3ADON) production by sucrose, 1-kestose and nystose were commonly observed among all of the strains tested. On the other hand, the levels of trichothecene biosynthesis induced by the other carbon sources were strain-specific. Tri4 and Tri5 expressions were up-regulated in the sucrose-containing medium but not in glucose. Trichothecene accumulation in the sucrose-containing medium was not repressed by the addition of glucose, indicating that trichothecene production was not regulated by carbon catabolite repression. These findings suggest that F. graminearum recognizes sucrose molecules, activates Tri gene expression and induces trichothecene biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号