首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences.  相似文献   

2.
DNA polymorphism in strains of the genus Brucella   总被引:23,自引:6,他引:17       下载免费PDF全文
Preparations of DNA from 23 Brucella strains including 19 reference strains were compared by restriction endonuclease analysis. Pulsed-field gel electrophoresis resulted in optimal resolution of fragments generated by digestion with low-cleavage-frequency restriction enzymes such as XbaI. By this technique, five electrophoretypes were distinguished in five reference strains of the different species, i.e., B. abortus, B. melitensis, B. suis, B. canis, and B. ovis. Minor profile differences allowed us to discriminate between most biovars within a species. However, the differences in the DNA patterns of different field strains of biovar 2 of B. melitensis were not sufficient to serve as markers for epidemiological studies. From the XbaI fragments, we were able to estimate the size of the genomes of B. abortus 544T and B. melitensis 16 MT. This method revealed a relationship between DNA fingerprints, species, and pathovars which could shed light on problems concerning the classification and evolution of members of the genus Brucella.  相似文献   

3.
Polynucleotide Homologies of Brucella Deoxyribonucleic Acids   总被引:11,自引:3,他引:8  
Deoxyribonucleic acids (DNA's) extracted from organisms presently placed in the genus Brucella (B. abortus, B. melitensis, B. neotomae, and B. suis) possessed very similar polynucleotide sequences. Unlabeled, single-stranded DNA fragments from B. abortus, B. melitensis, B. neotomae, and B. suis were equally effective in competing with the interaction of corresponding radiolabeled, single-stranded DNA fragments with their homologous DNA-agars. Unlabeled fragments of B. ovis, however, did not compete as effectively as the homologous, unlabeled DNA's, and this organism, therefore, had a detectably different polynucleotide composition. The mole percentages of guanine plus cytosine in Brucella DNA's (56 to 58%) were also similar. DNA's from Francisella tularensis, Escherichia coli, and the slow loris did not compete.  相似文献   

4.
We have studied the genomic structure and constructed the Spe I, Pac I and I- Ceu I restriction maps of the four biovars of the pathogenic bacterium Brucella suis . B . suis biovar 1 has two chromosomes of 2.1 Mb and 1.15 Mb, similar to those of the other Brucella species: B . melitensis , B . abortus , B . ovis and B . neotomae . Two chromosomes were also observed in the genome of B . suis biovars 2 and 4, but with sizes of 1.85 Mb and 1.35 Mb, whereas only one chromosome with a size of 3.1 Mb was found in B . suis biovar 3. We show that the differences in chromosome size and number can be explained by rearrangements at chromosomal regions containing the three rrn genes. The location and orientation of these genes confirmed that these rearrangements are due to homologous recombination at the rrn loci. This observation allows us to propose a scheme for the evolution of the genus Brucella in which the two chromosome-containing strains can emerge from an hypothetical ancestor with a single chromosome, which is probably similar to that of B . suis biovar 3. As the genus Brucella is certainly monospecific, this is the first time that differences in chromosome number have been observed in strains of the same bacterial species.  相似文献   

5.
Five genes homologous to the well-known omp25 and omp31 genes, that code for two major Brucella spp. outer membrane proteins (OMPs), have been detected in the genome of Brucella melitensis 16M and Brucella suis 1330. In this work we have determined the nucleotide sequence of these five genes, named omp31b, omp25b, omp25c, omp25d and omp22, in the six classical Brucella species reference strains and in representative strains of the recently proposed species Brucella cetaceae and Brucella pinnipediae that classify the Brucella strains isolated in the last years from marine mammals. Although these genes are quite conserved in the genus Brucella, several important differences have been found between species (i) omp31b contains a premature stop codon in B. canis and B. ovis truncating the encoded protein; (ii) the 5' end of omp31b is deleted in the three biovars of B. melitensis which probably prevents synthesis of Omp31b in this species; (iii) only B. melitensis, B. suis and B. neotomae would be able to synthesize the Omp25b protein with the characteristics shared by the Omp25/Omp31 group of proteins (characteristic signal sequence and C-terminal phenylalanine); (iv) a DNA inversion of 1747 bp including omp25b was detected in B. cetaceae strains; (v) a DNA deletion of about 15 kb was detected in all the six B. ovis strains tested. This deletion in B. ovis includes, among other genes, omp25b and wboA, a gene that has been shown to be required for the synthesis of the O-polysaccharide chain of the Brucella spp. smooth lipopolysaccharide. Several features of the DNA region absent from B. ovis suggest that this DNA fragment is a genomic island acquired by the Brucella ancestor by horizontal transfer and later deleted from B. ovis. The DNA polymorphism we have found in this work within the genus Brucella might be involved in the differences in pathogenicity and host preference displayed by the Brucella species.  相似文献   

6.
Protein sequences from characterized type III secretion (TTS) systems were used as probes in silico to identify several TTS gene homologs in the genome sequence of Brucella suis biovar 1 strain 1330. Four of the genes, named flhB, fliP, fliR, and fliF on the basis of greatest homologies to known flagellar apparatus proteins, were targeted in PCR and hybridization assays to determine their distribution among other Brucella nomen species and biovars. The results indicated that flhB, fliP, fliR and fliF are present in Brucella melitensis, Brucella ovis, and Brucella suis biovars 1, 2 and 3. Similar homologos have been reported previously in Brucella abortus. Using RT-PCR assays, we were unable to detect any expression of these genes. It is not yet known whether the genes are the cryptic remnants of a flagellar system or are actively involved in a process contributing to pathogenicity or previously undetected motility, but they are distributed widely in Brucella and merit further study to determine their role.  相似文献   

7.
The phospholipid composition of 6 Brucella species (B. melitensis, B. abortus, B. suis, B. ovis. B. canis, B. neotomae) and Australian mouse-derived strains of Brucella N 4, 11, 12 were studied. Comparison of phospholipid composition of Brucella cells with that of serologically related microorganisms revealed that all Brucella biotypes contain phosphatidyl-(N-methyl)ethanolamine and phosphatidylcholine while Y. enterocolitica, Sh. disenteriae, E. coli cells do not contain these two substances. It is concluded that the specific phospholipid pattern of Brucella biotypes may be useful in typing of new Brucella strains.  相似文献   

8.
Meyer, Margaret E. (University of California, Davis). Metabolic characterization of the genus Brucella. IV. Correlation of oxidative metabolic patterns and susceptibility to Brucella bacteriophage, type abortus, strain 3. J. Bacteriol. 82:950-953. 1961.-A total of 212 strains of brucellae that had been identified as Brucella melitensis, B. abortus, B. suis, or B. neotomae by their oxidative metabolism were tested for their susceptibility to Brucella bacteriophage, type abortus, strain 3. It was demonstrated that only those organisms that displayed the oxidative metabolic pattern that is singular for B. abortus were susceptible to this strain of phage, irrespective of their identity by the conventional methods usually employed for differentiating members of this genus. Strains of organisms that display the features of B. melitensis by the conventional determinative methods, but display the metabolic characteristics of B. abortus, are susceptible to lysis by this phage. These organisms are in fact B. abortus. Strains of organisms that display the features of B. melitensis by the classical methods, and display the metabolic pattern of B. melitensis, are not lysed by this phage. These organisms are B. melitensis. The conclusions then were drawn that B. abortus is the only species that can serve as host for this strain of phage, that oxidative metabolic patterns accurately identify the species in this genus, and that by the conventional methods of differentiation, many strains of B. abortus are misidentified as B. melitensis.  相似文献   

9.
The bacterium that causes canine abortion has polynucleotide sequences similar, in deoxyribonucleic acid (DNA)-DNA homology studies, to those of Brucella suis and, by inference from previous data, those of B. abortus and B. melitensis as well as B. neotomae. Therefore, the organism causing canine abortion appears to be a member of the genus Brucella. DNA preparations from Serratia marcescens, Alcaligenes faecalis, and Bordetella bronchiseptica, 58, 62, and 66 mole% guanine plus cytosine, respectively, do not have detectable polynucleotide sequence homologies with B. suis DNA which is 56 mole% guanine plus cytosine. B. ovis DNA lacks some of the polynucleotide sequences present in B. suis DNA and appears to be a deletion mutant. However, a large proportion of B. ovis polynucleotides are similar to those of other Brucella species, which supports the inclusion of B. ovis in the genus.  相似文献   

10.
Brucella is a Gram-negative bacterium that causes a worldwide-distributed zoonosis. The genus includes smooth (S) and rough (R) species that differ in the presence or absence, respectively, of the O-polysaccharide of lipopolysaccharide. In S brucellae, the O-polysaccharide is a critical diagnostic antigen and a virulence determinant. However, S brucellae spontaneously dissociate into R forms, a problem in antigen and S vaccine production. Spontaneous R mutants of Brucella abortus, Brucella melitensis, and Brucella suis carried the chromosomal scar corresponding to genomic island 2 (GI-2) excision, an event causing the loss of the wboA and wboB O-polysaccharide genes, and the predicted excised circular intermediate was identified in B. abortus, B. melitensis, and B. suis cultures. Moreover, disruption of a putative phage integrase gene in B. abortus GI-2 caused a reduction in O-polysaccharide loss rates under conditions promoting S-R dissociation. However, spontaneous R mutants not carrying the GI-2 scar were also detected. These results demonstrate that the phage integrase-related GI-2 excision is a cause of S-R brucella dissociation and that other undescribed mechanisms must also be involved. In the R Brucella species, previous works have shown that Brucella ovis but not Brucella canis lacks GI-2, and a chromosomal scar identical to those in R mutants was observed. These results suggest that the phage integrase-promoted GI-2 excision played a role in B. ovis speciation and are consistent with other evidence, suggesting that this species and B. canis have emerged as two independent lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号