首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of cytochrome P-455 nm complexes was investigated with enantiomeric 2-nitroso-1-phenylpropane--the C-nitroso analogue of amphetamine--and optically active N-hydroxyamphetamine, in the presence of NADPH. For comparative reasons, three different drug-metabolizing enzyme systems were used, namely microsomes from control and phenobarbital-treated rats, and a reconstituted system containing the main phenobarbital-induced form of cytochrome P-450 from rat liver. In microsomes obtained from phenobarbital-treated rats, pronounced differences in the kinetics of complex formation were observed between the enantiomeric C-nitroso compounds, but not between the isomers of N-hydroxyamphetamine. In the reconstituted enzyme system the S-nitroso compound formed the P-455 nm chromophore at the highest initial rate, while the R analogue was devoid of complexing activity. The rates of complex formation from the N-hydroxylamine enantiomers were high and equal.  相似文献   

2.
The N-oxidation of N-(2-methyl-1-phenyl-2-propyl)hydroxylamine (N-hydroxyphentermine, MPPNHOH) and the N-hydroxylation of 2-methyl-1-phenyl-2-propylamine (phentermine) by reconstituted systems that contained cytochromes P-450 purified from rat liver microsomes were demonstrated. The oxidation of MPPNHOH, but not of phentermine, could also be mediated by a superoxide and hydrogen peroxide generating system that contained xanthine and xanthine oxidase. Superoxide dismutase completely inhibited the oxidation of MPPNHOH by the xanthine/xanthine oxidase system and inhibited by 70% the oxidation mediated by a reconstituted cytochrome P-450 oxidase system. The majority of the microsomal oxidation was inhibited by an antibody raised against the major isozyme of cytochrome P-450 purified from livers of phenobarbital-pretreated rats. 2-Methyl-2-nitroso-1-phenylpropane (MPPNO) was found to be an intermediate in the overall oxidation of MPPNHOH to 2-methyl-2-nitro-1-phenylpropane (MPPNO2). Superoxide dismutase appeared to inhibit the first step, the conversion of MPPNHOH to MPPNO. These observations are accounted for by a sequence of two mechanistically distinct P-450-mediated oxidations. In the first reaction, N-hydroxylation of phentermine occurs by a normal cytochrome P-450 pathway. The formed hydroxylamine then uncouples the cytochrome P-450 system to generate superoxide and hydrogen peroxide. The superoxide oxidizes MPPNHOH to MPPNO which is then oxidized to MPPNO2, the ultimate product. This superoxide-mediated oxidation represents another pathway for N-oxidation by cytochrome P-450.  相似文献   

3.
Cytochrome P-455 nm complex formation in phenobarbital induced rat liver microsomes was investigated using both an NADPH/O2-dependent monooxygenase system and a peroxygenase/peroxidase system where hydrogen peroxide was substituted for NADPH. The substrates tested were the enantiomers of four 1-alkyl-substituted 2-phenylethanamines (unbranched 1-alkyl substituents, comprising one to four carbons), S(+)- and R(-)-N-hydroxyamphetamine and racemic mixtures of N-hydroxy-1-phenyl-2-butanamine and N-hydroxy-3-methyl-1-phenyl-2-butanamine. During NADPH/O2-dependent metabolism the amines showed a positive correlation between extent of complex formation and lipophilicity; furthermore the S(+)-isomers gave rise to larger amounts of complex than the corresponding R(-)-analogues. With the hydroxylamines the ability to form complexes was greater than with any of the amines but no definite difference was seen among the hydroxylamines. In the peroxygenase system the hydroxylamines still gave larger amounts of complex than the amines but the differences seen within the homologous series of chiral amines when using the monooxygenase system were no longer observed. Although the quantitative trends in complex formation seen in the monooxygenase system were non-existent when H2O2 was substituted for NADPH, mere qualitative rules still seemed to apply; substrates which failed to give the complex during NADPH-dependent metabolism (2-phenylethanamine, phentermine, N-hydroxyphentermine and phenylacetone oxime) were inactive also in the peroxygenase system. The results substantiate the notion that the monooxygenase and peroxygenase reaction mechanisms of cyt. P-450 follow similar but not identical pathways.  相似文献   

4.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes.  相似文献   

5.
Porcine ciliary epithelial microsomes synthesized 12[S]-hydroxy-5, 8, 10, 14-eicosatetraenoic acid (12[S]-HETE) from arachidonic acid by a membrane-bound lipoxygenase and 12[R]-isomer by the cytochrome P450-dependent monooxygenase system. The activity to form 12(R)-isomer was markedly enhanced by 3-methylcholanthrene and clofibrate. Both basal and induced levels of 12(R)-HETE synthesizing activity were considerably higher in nonpigmented epithelial cells than in pigmented cells of the ciliary processes. The induced activity was suppressed by polyclonal antibodies raised against purified cytochrome P450 IA1 and NADPH-P450 reductase but not by substrates for clofibrate-inducible omega/omega-1 hydroxylases (P450 IVA-mediated). These results suggest that 12(R)-HETE synthesis by porcine ciliary microsomes may be mediated by a cytochrome P450 of the IA family.  相似文献   

6.
Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) inhibit the 0-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benz(a)pyrene-induced (BP) mice but do not inhibit the 0-deethylase activity in liver microsomes of BP-induced rats. Anti-P3-450 and anti-P-450c inhibit BP-hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes. In a reconstituted monooxygenase system isolated cytochrome P3-450 metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, did not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min/nmol cytochrome. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes. The interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c was accompanied by the appearance of a single band (cytochrome P3-450).  相似文献   

7.
Rat lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic specificities towards activation of several procarcinogens to genotoxic metabolites in Salmonella typhimurium TA1535/pSK1002. We first examined the roles of rat liver microsomal P-450 enzymes in the activation of benzo[a]pyrene and its 7,8-diol enantiomers to genotoxic products, and found that P-450 1A1 is a major catalyst for the activation of these potential procarcinogens in rat livers. Using lung microsomes isolated from rats treated with various P-450 inducers we obtained evidence that at least three P-450 enzymes are involved in the activation of several procarcinogens. Immunoinhibition studies support the view that benzo[a]pyrene and its 7,8-diol derivatives, other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole are activated to genotoxins mainly by rat P-450 1A1, which is inducible in rat lungs by 5,6-benzoflavone and the polychlorinated biphenyl mixture Aroclor 1254. Activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline and 2-amino-3-methylimidazo[4,5-f]quinoline may be catalyzed by another P-450 enzyme because the activities were not induced by treatment with 5,6-benzoflavone or Aroclor 1254. The observation that both activities were inhibited by antibodies raised against P-450 1A2 and by 7,8-benzoflavone suggests a role for an enzyme of P-450 1A family, probably P-450 1A2, in rat lung microsomes. The activation of aflatoxin B1 and sterigmatocystin appears to be catalyzed by other P-450 enzyme(s) rather than the P-450 1A family as judged by the different responses of activities to the P-450 inducers and the specific antibodies in rat lung microsomes. Interestingly, lung microsomal activation of several procarcinogens was found to be suppressed in rats treated with isosafrole and pregnenolone 16 alpha-carbonitrile. Thus, the results support the roles of different P-450 enzymes in the activation of procarcinogens in rat lung microsomes.  相似文献   

8.
In a reconstituted system containing NADPH, dilauroyl-L-3-phosphatidylcholine, and NADPH-cytochrome P-450 reductase purified from rat liver microsomes, cytochrome P-450 (P-450 HFLa) purified from human fetal livers catalyzed the 16 alpha-hydroxylation of dehydroepiandrosterone 3-sulfate (DHEA-sulfate). Addition of cytochrome b5 purified from rat liver microsomes to the reconstituted system resulted in a remarkable increase in the hydroxylase activity. The level of P-450 HFLa in liver homogenates from human fetuses highly correlated with the activity of DHEA-sulfate 16 alpha-hydroxylase. Antibodies to P-450 HFLa inhibited the 16 alpha-hydroxylation of DHEA-sulfate in a dose-dependent manner. The NH2-terminal amino acid sequence of P-450 HFLa was similar to that of P-450NF (Beaune, P. H., Umbenhauer, D. R., Bork, R. W., Lloyd, R. S., and Guengerich, F. P. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8064-8068). We conclude that P-450 HFLa is a form of cytochrome P-450 involved in the 16 alpha-hydroxylation of DHEA-sulfate.  相似文献   

9.
Cytochrome P450 LM2 (CYPIIB4) from phenobarbital-induced rabbit liver microsomes, purified to only one band in SDS-PAGE, was further resolved in five peaks by cation exchange HPLC. The two major peaks were partially characterized. Both of them have the amino terminal sequence Met-Glu and the same Cys content. They exhibited the same spectral absorption maximum and similar binding constants for 1-benzylimidazole and imidazole. However, binding of benzphetamine was different. One subfraction presented a Michaelis-Menten type binding curve, but the other presents a non-typical one with an additional high affinity binding site. These subfractions of cytochrome P450 LM2 slightly differed in their catalytic activities with benzyloxy- and pentoxyresorufin substrates. On the contrary, no heterogeneity was observed for P450 LM4.  相似文献   

10.
1. A comparison was made between rat hepatic and plant microsomal cytochrome P-450 and cytochrome P-450 linked enzymic activities. 2. The results show that, compared with plant microsomes, rat hepatic microsomal protein concentrations were 165-fold higher, and rat hepatic cytochrome P-450 concentration were 32-fold higher. 3. Rat hepatic Cytochrome P-450 linked enzyme activities were 1765-fold and 25-fold greater when compared with plant microsomes using aldrin and biphenyl as substrates, respectively. 4. Rats metabolised biphenyl to 2- and 4-hydroxybiphenyl, whereas plants produced only the latter metabolite. 5. Pretreatment of rats and plant tissues with biphenyl, Aroclor 1248 and the sodium salt of phenobarbital increased significantly the microsomal protein concentrations, and enzyme activities linked to cytochrome P-450. 6. Unlike rat microsomes, those of plants were unable to metabolise halosubstituted biphenyls at measurable rates.  相似文献   

11.
The inactivation of cytochrome P450 enzymes by cyclopropylamines has been attributed to a mechanism involving initial one-electron oxidation at nitrogen followed by scission of the cyclopropane ring leading to covalent modification of the enzyme. Herein, we report that in liver microsomes N-cyclopropylbenzylamine (1) and related compounds inactivate P450 to a large extent via formation of metabolic intermediate complexes (MICs) in which a nitroso metabolite coordinates tightly to the heme iron, thereby preventing turnover. MIC formation from 1 does not occur in reconstituted P450 systems with CYP2B1/2, 2C11 or 2E1, or in microsomes exposed to gentle heating to inactivate the flavin-containing monooxygenase (FMO). In contrast, N-hydroxy-N-cyclopropylbenzylamine (3) and N-benzylhydroxylamine (4) generate MICs much faster than 1 in both reconstituted and microsomal systems. MIC formation from nitrone 5 (PhCH = N(O)cPr) is somewhat faster than from 1, but very much faster than the hydrolysis of 5 to a primary hydroxylamine. Thus the major overall route from 1 to a P450 MIC complex would appear to involve FMO oxidation to 3, further oxidation by P450 and/or FMO to nitrone 5' (C2H4C = N(O)CH2Ph), hydrolysis to 4, and P450 oxidation to alpha-nitrosotoluene as the precursor to oxime 2 and the major MIC from 1.  相似文献   

12.
Deuterium isotope effects [D(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled or [1,1-2H2]ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1-13C]- and [2H6]ethanol or [2,2,2-2H3]- and [1,1-2H2]ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The D(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM2 oxidized the alcohol with D(V/K) of about 2.8 and 1.8, respectively. Addition of FeIIIEDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect, which approached that of the xanthine-xanthine oxidase system (1.4), whereas desferrioxamine had no significant effect. Incubations of all cytochrome P-450 containing systems or the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1-2H]ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cytochrome P-450 (P-450C21), purified from bovine adrenocortical microsomes, was incorporated into the single bilayer liposomes of egg yolk phosphatidylcholine by gel filtration, using a high pressure liquid chromatography system. Interaction of the steroid substrates, 17 alpha-hydroxyprogesterone and progesterone, with P-450C21 in the liposomes was studied in the equilibrium state by measuring substrate-induced spectral change. The apparent dissociation constant of the P-450C21-substrate complex increased with phosphatidylcholine concentration in the system, showing the substrate to be partitioned between the aqueous and lipid phases. Partition coefficients, determined by equilibrium dialysis and the Hummel-Dreyer method, were 3500 for progesterone and 2000 for 17 alpha-hydroxyprogesterone at 25 degrees C. The binding process of the substrates to P-450C21 in the liposomes and their dissociation were measured by a stopped flow method. The apparent rate of substrate binding to P-450C21 in the liposomes was not effected by substrate partitioning, indicating partitioning to occur much more quickly than substrate binding to P-450C21. Absorption changes observed in the stopped flow experiments were analyzed at a rapid equilibrium of partitioning. Based on these results, the substrate binding site of P-450C21 was concluded to face the lipid phase of the liposome membranes.  相似文献   

14.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

15.
The differences in the levels of cytochrome P-450s in hepatic and renal microsomes between spontaneously hypertensive rats (SHR) and normotensive control rats (Wistar Kyoto rats, WKY) were investigated by Western blotting with a specific antibody. Differences in the metabolic activity of the microsomes were also studied. In hepatic microsomes, the content of P450 PB-1 (IIIA2) was 140% higher in SHR than in WKY and the content of P450 IF-3 (IIA1) in SHR was one-seventh that in WKY. The differences reflected the increase in testosterone 6 beta-hydroxylation activity and decrease in testosterone 7 alpha-hydroxylation activity in hepatic microsomes of SHR. The level of P450 K-5 (IVA2) in hepatic microsomes of SHR was 4-times that in microsomes of WKY. The levels of other cytochrome P-450s in SHR were not very different from those in WKY. In renal microsomes, the levels of three renal cytochrome P-450s, P450 K-2, K-4, and K-5, were measured. The level of P450 K-5 (fatty acid omega-hydroxylase) in SHR was 50% higher than that in WKY and the difference reflected the increase in lauric acid omega- and (omega-1)-hydroxylation activities of the renal microsomes of SHR. The levels of P450 K-2 and K-4 did not differ in both rats.  相似文献   

16.
1. The metabolism in vitro and microsomal interactions of (+)-amphetamine, (-)-amphetamine, (+)-benzphetamine and (-)-benzphetamine were studied with hepatic microsomes from phenobarbitone-pretreated male rabbits. 2. (+)-Benzphetamine was N-demethylated 30-35% faster than (-)-benzphetamine, but the apparent Michaelis constants for the two enantiomers were similar. 3. (-)-Amphetamine was deaminated about 200% faster than (+)-amphetamine. 4. The benzphetamine enantiomers gave qualitatively and quantitatively identical type I microsomal difference spectra (peak, 390nm; trough, 425nm) indicating identical apparent binding affinities for microsomes and identical spectral changes at maxima (DeltaE(max.) values). 5. The amphetamine enantiomers gave qualitatively identical type II microsomal difference spectra (peak, 433nm; trough, 395nm). However, the type II spectral data indicated that (+)-amphetamine had a markedly higher apparent binding affinity than (-)-amphetamine for microsomes. The amphetamine enantiomers gave identical DeltaE(max.) values. 6. The benzphetamine enantiomers (0.5mm) enhanced the rate of microsomal cytochrome P-450 reduction by NADPH by 400-500%, (+)-benzphetamine enhancing the rate 20-25% more than (-)-benzphetamine. 7. The amphetamine enantiomers decreased the rate of microsomal cytochrome P-450 reduction by NADPH. At a concentration of 2mm, (+)-amphetamine decreased the rate more than (-)-amphetamine. 7. All four enantiomers enhanced microsomal NADPH oxidation.  相似文献   

17.
Cytochrome P450 (CYP450) 2E1 (CYP2E1) is induced by pure ethanol following its chronic administration, and commercial alcoholic beverages, whose major constituent is ethanol, are generally assumed to have a similar effect on this isoform of CYP450. Recently, we serendipitously discovered that beer administered to rats for six weeks had only a minimal inductive effect on hepatic microsomal CYP2E1 activity, while rats on 10% ethanol had CYP2E1 levels five-fold greater than controls. The daily ethanol intake levels for the beer fed and 10% ethanol fed rats were equivalent. In addition, CYP450 spectral features of microsomes from beer fed and ethanol fed rats were markedly different. Spectral examination of microsomes from beer fed rats revealed that about 40% of the total CYP450 content existed in the form of a metabolic intermediate (MI) complex, while no evidence was found for MI complex formation in microsomes of ethanol fed rats. We conclude that beer contains an unidentified component(s) that apparently blocks the typical ethanol induction of CYP2E1 and form an MI complex with CYP450.  相似文献   

18.
Immunoglobulin G fractions (IgGs), isolated from rabbits immunized against hepatic cytochrome P-450 isozymes were used to investigate the immunochemical homology among trout P-450s and between trout and rat P-450s. The antigens used for immunization were five constitutive trout P-450s (LMC1 to LMC5), one beta-naphthoflavone (BNF)-inducible trout P-450 (LM4b), and one phenobarbital-induced rat P4500IIB1 (PB-B). In the enzyme-linked immunosorbent assay (ELISA), strong cross-reactivity was observed between anti-LMC2 IgG and P-450 LMC1, and between anti-LMC3 IgG and P-450 LMC4. There was little or no cross-reactivity of anti-LMC5 IgG with other trout P-450s. Trout P-450 LM4b was not recognized by any of the antibodies against constitutive trout P-450s. Antibodies to P-450 LMC1 and P450 LMC2 cross-reacted strongly with rat P450IIB1 and with proteins of PB-induced rat liver microsomes. Rat P450IA1 (BNF-B) did not cross-react with anti-LMC1 or anti-LMC2 IgG. These cross-reactions were essentially confirmed by immunoblot (Western blot) analysis. Western blots of PB-induced rat liver microsomes probed with anti LMC1 revealed two major immunoreactive proteins in the P-450 region, one of which co-migrated with rat P450IIB1. P450IIB1 itself cross-reacted strongly with anti-LMC1 IgG. In control rats, a single protein band cross-reacted poorly with anti-LMC1 IgG. Antibodies to LMC1 and LMC2 did not cross-react with rat P450IA1 in Western blots. The antigenic epitopes in rat P450IIB1 recognized by anti-LMC1 IgG and anti-LMC2 IgG are probably not located at or near the active site of the enzyme since these antibodies did not inhibit benzphetamine N-demethylase activity of P450IIB1 or of PB-induced rat liver microsomes. In general, our results demonstrate: (1) the presence of a significant homology between LMC1 and LMC2, and between constitutive trout P-450 (LMC1) and PB-induced rat P-450 (P450IIB1); and (2) distant homology between constitutive trout P-450s and constitutive rat P-450s or BNF-induced rat P-450s.  相似文献   

19.
Two forms of cytochrome P-450 (P-450MC1 and P-450MC2) were purified from liver microsomes of crab-eating monkeys (Macaca irus) treated with 3-methylcholanthrene (MC). Monkey P-450MC1 preparation had a specific content of 14.0 nmol/mg protein and showed a main protein band with a minimum molecular weight of 52,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Monkey P-450MC2 preparation had a specific content of 12.1 nmol/mg protein and a minimum molecular weight of 54,000. The carbon monoxide-reduced difference spectral peaks of monkey P-450MC1 and P-450MC2 were at 448 and 447 nm, respectively. In the reconstituted system, monkey P-450MC2 had high activities for benzo[a]pyrene 3-hydroxylation and 7-ethoxycoumarin O-deethylation. Monkey P-450MC1 had low activities toward these two substrates and a high activity for benzphetamine N-demethylation. Monkey P-450MC1 and P-450MC2 were detected by immunoblotting using an antibody prepared against rat cytochrome P-450c, which is a major form of cytochrome P-450 in liver microsomes of MC-treated rats. These results suggested that the molecular properties of cytochrome P-450 in liver microsomes of crab-eating monkeys treated with MC are similar to those in rats.  相似文献   

20.
Boar taint is the unfavourable odour and taste from pork fat, which results in part from the accumulation of skatole (3-methylindole, 3MI). The key enzymes in skatole metabolism are thought to be cytochrome P450 2E1 (CYP2E1) and cytochrome 2A (CYP2A); however, the cytochrome P450 (CYP450) isoform responsible for the production of the metabolite 6-hydroxy-3-methylindole (6-OH-3MI, 6-hydroxyskatole), which is thought to be involved in the clearance of skatole, has not been established conclusively. The aim of this study was to characterize the role of porcine CYP450s in skatole metabolism by expressing them individually in the human embryonic kidney HEK293-FT cell line. This system eliminates the problems of the lack of specificity of antibodies, inhibitors and substrates for CYP450 isoforms in the pig, and contributions of any other CYP450s that would be present. The results show that pig CYP1A1, CYP2A19, CYP2C33v4, CYP2C49, CYP2E1 and CYP3A and human CYP2E1 (hCYP2E1) are all capable of producing the major skatole metabolite 3-methyloxyindole (3MOI), as well as indole-3-carbinol (I3C), 5-hydroxy-3-methylindole (5-OH-3MI), 6-OH-3MI, 2-aminoacetophenone (2AAP) and 3-hydroxy-3-methyloxindole. CYP2A19 produced the highest amount of the physiologically important metabolite 6-OH-3MI, followed by porcine CYP2E1 and CYP2C49; CYP2A19 also produced more 6-OH-3MI than hCYP2E1. Co-transfection with CYB5A increased the production of skatole metabolites by some of the CYP450s, suggesting that CYB5A plays an important role in the metabolism of skatole. We also show the utility of this expression system to check the specificity of selected substrates and antibodies for porcine CYP450s. Further information regarding the abundance of different CYP450 isoforms is required to fully understand their contribution to skatole metabolism in vivo in the pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号