首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper assesses the present state of the art of ploidy manipulation in the loach, Misgurnus anguillicaudatus (Teleoste: Cobitidae). Diploid sperm can be obtained from natural tetraploid individuals with four sets of homologous chromosomes. Using diploid sperm, various polyploids and androgenetic diploids have been produced. Cryptic clonal lineages are also recognized in wild populations of the loach. They produce unreduced diploid eggs genetically identical to somatic cells of the mother fish and most diploid eggs develop gynogenetically as a member of the clone. However, some eggs develop to triploid and/or diploid-triploid mosaic individuals by incorporation of sperm nucleus. Diploid-triploid mosaic males exclusively generate fertile diploid sperm with clonal genotypes. Such diploid sperm can also be obtained from artificially sex-reversed clonal individuals. Recent population studies suggested that Japanese M. anguillicaudatus might not be a single species, but a complex involving cryptic species, because wild populations exhibited genetic differentiation at interspecific level. This implies possible relationship between atypical reproduction and natural hybridization in the loach.  相似文献   

2.
Phylogenetic relationships between sympatric, morphologically indistinguishable diploid and tetraploid plants ofDactylis glomerata L. (Gramineae) in Galicia (Spain) were assessed using allozyme markers for 6 distinct systems. The study exploited recent introduction in Galicia and subsequent hybridization of an alien 4xDactylis subspecies possessing distinct allozymes from those of all the native plants. Opportunities for gene exchanges between the ploidies were estimated from in situ observations of flowering, examination of progenies in 2x/4x natural and experimental crosses, and enzyme analyses. Results show a high genetic similarity between the Galician diploids and tetraploids, which possess peculiar alleles in common. Although the ploidy levels usually have distinct flowering periods, interploidal crosses do occasionally occur. Gene flow is likely much more important from the diploid to the tetraploid level. A good genetic intermixing occurs between the Galician and the alien tetraploid entities which have simultaneous flowering. Autopolyploidization of the diploids followed by various rates of hybridization is proposed as one very probable origin of natural tetraploids inDactylis.  相似文献   

3.
Paspalum notatum is a subtropical grass widely distributed in the temperate areas of America. Diploids are sexual while polyploids give rise to clonal seeds through aposporous apomixis. RAPD markers were used to analyze the genetic structure of three natural populations: i) diploids reproducing sexually (R2X); ii) sympatric apomictic tetraploids collected in the vicinity of the diploids (R4X); iii) allopatric apomictic tetraploids growing in isolation (C4X). The apomictic reproduction rate was evaluated by the use of molecular markers in progeny tests, while chromosome-counting allowed the verification of ploidy levels. Data revealed that the R4X group presented a variation considerably higher than that observed for C4X. Jaccards coefficients were used to produce a cluster diagram using the UPGMA method. All but one tetraploid genotypes grouped together and were associated to diploid genotype A21. The possibility of occasional generation of novel tetraploid clones from the interaction between tetraploid and diploid individuals is discussed.  相似文献   

4.
Speciation requires the evolution of barriers to gene exchange between descendant and progenitor populations. Cryptic reproductive barriers in plants arise after pollination but before fertilization as a result of pollen competition and interactions between male gametophytes and female reproductive tissues. We tested for such gametic isolation between the polyploid Chamerion angustifolium and its diploid progenitor by conducting single (diploid or tetraploid) and mixed ploidy (1 : 1 diploid and tetraploid) pollinations on both cytotypes and inferring siring success from paternity analysis and pollen-tube counts. In mixed pollinations, polyploids sired most (79%) of their own seeds as well as those of diploids (61%) (correcting for triploid block, siring success was 70% and 83%, respectively). In single donor pollinations, pollen tubes from tetraploids were more numerous than those from diploids at four different positions in each style and for both diploid and tetraploid pollen recipients. The lack of a pollen donor x recipient interaction indicates that the tetraploid siring advantage is a result of pollen competition rather than pollen-pistil interactions. Such unilateral pollen precedence results in an asymmetrical pattern of isolation, with tetraploids experiencing less gene flow than diploids. It also enhances tetraploid establishment in sympatric populations, by maximizing tetraploid success and simultaneously diminishing that of diploids through the production of inviable triploid offspring.  相似文献   

5.
In this study, we analysed morphological, anatomical and physiological effects of polyploidisation in Spathiphyllum wallisii in order to evaluate possible interesting advantages of polyploids for ornamental breeding. Stomatal density was negatively correlated with increased ploidy level. Stomatal size increased in polyploids. Tetraploid Spathiphyllum plants had more ovate and thicker leaves. The inflorescence of tetraploids had a more ovate and thicker spathum, a more cylindrical spadix and a thicker but shorter flower stalk. Biomass production of the tetraploids was reduced, as expressed by lower total dry weights, and tetraploids produced fewer shoots and leaves compared with their diploid progenitors. Furthermore, tetraploid Spathiphyllum plants were more resistant to drought stress compared with diploid plants. After 15 days of drought stress, diploids showed symptoms of wilting, while the tetraploids showed almost no symptoms. Further, measurements of stomatal resistance, leaf water potential, relative water content and proline content indicated that the tetraploid genotypes were more resistant to drought stress compared with the diploids.  相似文献   

6.
Isogenic diploid and tetraploid alfalfa (Medicago sativa L.) was studied with molecular markers to help understand why diploid performance and breeding behavior does not always predict that of tetraploids. In a previous study of partially heterozygous alfalfa genotypes, we detected a low correlation between yields of isogenic diploid (2x) and tetraploid (4x) single-cross progenies, and genetic distances were more highly correlated with yields of tetraploids than diploids. These differences may be related to the level of RFLP heterozygosity expected among progenies derived from heterozygous parents at the two ploidy levels. The objectives of this study were to determine the relationships among genetic distance, forage yield and heterozygosity in isogenic 2 x and 4 x alfalfa populations. Four diploid genotypes were chromosome doubled to produce corresponding isogenic autotetraploids, and these genotypes were mated in 4 × 4 diallels to produce 6 single-cross families at each ploidy level for field evaluation. Allele compositions of parents were determined at 33 RFLP loci by monitoring segregation of homologous restriction fragments among individuals within progenies, and these were used to estimate RFLP heterozygosity levels for all single-cross progenies at both ploidy levels. RFLP heterozygosity rankings were identical between progenies of isogenic diploid and tetraploid parents; but significant associations (P < 0.05) between estimated heterozygosity levels and forage yield were detected only at the tetraploid level. Since tetraploid families were nearly 25% more heterozygous than the corresponding diploid families, inconsistencies in the association between molecular marker diversity and forage yields of isogenic 2 x and 4 x single crosses may be due to recessive alleles that are expressed in diploids but masked in tetraploids. The gene action involved in heterosis may be the same at both ploidy levels; however, tetraploids benefit from greater complementary gene interactions than are possible for equivalent diploids. Present address: AgResearch Grasslands, New Zealand Pastoral Agriculture Research Institute, Palmerston North, New Zealand  相似文献   

7.
Conidia ofTrichoderma reesei QM 9414 were treated with colchicine in order to obtain polyploids (diploids; tetraploids). Cellulase production by diploids (mononucleate conidia) was almost twice as great as that of the original strain, but that of tetraploids (binucleate conidia) was not increased. When these latter conidia were re-treated with 2.0% (w/v) colchicine, multiple nuclei were produced in each conidium, and their diameter was almost the same as that of the original nucleus. Cellulase production of the diploid was almost the same in either mononucleate or multinucleate nature. However, cellulase production by the tetraploid which produced multinucleate conidia was greater than that of the binucleate tetraploid and that of the diploid. The multinucleation technique can contribute to enhancing cellulase production.  相似文献   

8.
Diploids and tetraploids of the cyprinid loach Misgurnus anguillicaudatus coexist in many natural habitats in Asia. However, little is known about the biological and ecological differences between these two ploidy forms. We examined age, body size and growth rates of fish in a mixed ploidy population of M. anguillicaudatus in the Yangtze River basin in China. The sex ratios of both diploid and tetraploid M. anguillicaudatus were highly skewed toward females, who tended to be larger than males. The age distributions of the collected specimens clearly indicated that tetraploids lived longer than diploids. For example, we found a substantial number of tetraploids that were 5+ years old, while the oldest diploids were 4+ years old. Tetraploids were also longer and heavier than diploids for both sexes. Using the empirical body size and age data, we inferred the growth patterns of these fish with the von Bertalanffy growth function. The estimated asymptotic body lengths (L ) indicated that tetraploids could indeed achieve larger body sizes than diploids. This difference was partially due to the increased growth rate, as demonstrated by lower growth coefficient (K) and higher growth performance index (φ’). In sum, we show that tetraploid M. anguillicaudatus exhibited significantly increased longevity and superior growth performance compared to diploids. These differences may contribute to the ecological competitiveness of tetraploid M. anguillicaudatus, thus enabling them to coexist with diploids in certain ecological settings.  相似文献   

9.
Polyploidization is a major trend in plant evolution that has many advantages over diploid. In particular, the enlargement and lower fertility of polyploids are very attractive traits in forest tree breeding programs. We report here a system for the in vitro induction and identification of tetraploid plants of Paulownia tomentosa induced by colchicine treatment. Embryonic calluses derived from placentas were transferred to liquid Murashige and Skoog (MS) medium containing different concentrations of colchicine (0.01, 0.05, or 0.1%) and incubated for 24, 48, or 72 h on an orbital shaker at 110 rpm. The best result in terms of the production of tetraploid plantlets was obtained in the 48 h + 0.05% colchicine treatment, with more than 100 tetraploid plantlets being produced. The ploidy level of plantlets was verified by chromosome counts, flow cytometry, and morphology. The chromosome number of tetraploids was 2n = 4x = 80 and that of diploid plantlets was 2n = 2x = 40. The relative fluorescence intensity of tetraploids was twofold higher than that of diploids. The tetraploid and diploid plantlets differed significantly in leaf shape, with those of the former being round and those of the latter pentagonal. The mean length of the stomata was longer in tetraploid plants than diploid plants, and stomatal frequency was reduced with the increased ploidy level. The tetraploids had large floral organs that were easily distinguishable from those of diploid plants.  相似文献   

10.
Clonal reproduction is associated with the incidence of polyploidy in flowering plants. This pattern may arise through selection for increased clonality in polyploids compared to diploids to reduce mixed‐ploidy mating. Here, we test whether clonal reproduction is greater in tetraploid than diploid populations of the mixed‐ploidy plant, Chamerion angustifolium, through an analysis of the size and spatial distribution of clones in natural populations using AFLP genotyping and a comparison of root bud production in a greenhouse study. Natural tetraploid populations (N = 5) had significantly more AFLP genotypes ( = 10.8) than diploid populations ( = 6.0). Tetraploid populations tended to have fewer ramets per genotype and fewer genotypes with >1 ramet. In a spatial autocorrelation analysis, ramets within genotypes were more spatially aggregated in diploid populations than in tetraploid populations. In the greenhouse, tetraploids allocated 90.4% more dry mass to root buds than diploids, but tetraploids produced no more root buds and 44% fewer root buds per unit root mass than diploids. Our results indicate that clonal reproduction is significant in most populations, but tetraploid populations are not more clonal than diploids, nor are their clones more spatially aggregated. As a result, tetraploids may be less sheltered from mixed‐ploidy mating and diploids more exposed to inbreeding, the balance of which could influence the establishment of tetraploids in diploid populations.  相似文献   

11.
? Premise of the study: Most plants are polyploid and have more than two copies of the genome. The evolutionary success of polyploids is often attributed to their potential to harbor increased genetic variation, but it is poorly understood how polyploids can attain such variation. Because of their formation bottleneck, newly formed tetraploids start out with little variation. Tetraploids may attain genetic variation through a combination of new mutations, recurrent formation, and gene exchange with diploid ancestors or related tetraploid species. We explore the role of gene exchange and introgression in autotetraploid Rorippa amphibia, a species that harbors more genetic variation than its diploid ancestors. ? Methods: We crossed autotetraploid R. amphibia to diploid conspecifics and tetraploid R. sylvestris and backcrossed resulting F(1) hybrids. We used flow cytometry to determine the ploidy of all progeny. ? Key results: Tetraploids of R. amphibia and R. sylvestris were interfertile; F(1) hybrids were fertile and could backcross. Crosses between diploids and tetraploids yielded a small number of viable, often tetraploid progeny. This indicates that unreduced gametes can facilitate gene flow from diploids to tetraploids. We detected a frequency of unreduced gametes of around 2.7 per 1000, which was comparable between diploids and tetraploids. ? Conclusions: Introgression from tetraploid R. sylvestris provides a realistic source of variation in autotetraploid R. amphibia. Only in a scenario where other compatible partners are absent, for example immediately after tetraploidization, gene flow through unreduced gametes from diploids could be an important source of genetic variation for tetraploids.  相似文献   

12.
Summary Chloroplast DNA variation has been used to examine some of the maternal lineages involved in the evolution of the intraspecific polyploid complex, Dactylis glomerata L. Diploid (2x) and tetraploid (4x) individuals were collected from natural populations of the subspecies glomerata (4x), marina (4x) and lusitanica (2x), as well as from sympatric 2x/4x populations of the Galician type. Digestion of their ctDNA with 11 restriction endonucleases revealed enough variation to characterise three ctDNA variants, designated MBMK, MBmK and mBMK. The distribution of these ctDNA variants reflects different stages in their spread among the populations. The MBMK ctDNA variant predominated at both ploidy levels in subspecies glomerata, lusitanica and marina, and in recent tetraploid Galician/glomerata hybrids. The MBmK variant was detected in a single tetraploid individual and probably results from a relatively recent mutation. Fixation of the mBMK minority variant in the diploid and tetraploid Galician populations adds to the evidence concerning the possible origin of the Galician tetraploids. It means that the Galician diploids were maternal ancestors of the tetraploids. This result complements evidence from earlier studies based on morphology or biochemical markers, and reduces the likelihood that the tetraploids arose by hybridisation between an ancient Galician diploid and an alien tetraploid. It is, however, consistent with a true autopolyploid origin of the tetraploids.  相似文献   

13.
We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.  相似文献   

14.
Abstract. Theoretical models indicate that the evolution of tetraploids in diploid populations will depend on both the relative fitness of the tetraploid and that of the diploid-tetraploid hybrids. Hybrids are believed to have lower fitness due to imbalances in either the ploidy (endosperm imbalance) or the ratio of maternal to paternal genomes in their endosperm (genomic imprinting). In this study we created diploids, tetraploids, and hybrid triploids of Chamerion angustifolium from crosses between field-collected diploid and tetraploid plants and evaluated them at six life stages in a greenhouse comparison. Diploid offspring (from 2 x × 2 x crosses) had significantly higher seed production and lower biomass than tetraploid offspring (from 4 x × 4 x crosses). Relative to the diploid, the cumulative fitness of tetraploids was 0.67. In general, triploids (from 2 x × 4 x , 4 x × 2 x crosses) had significantly lower seed production, lower pollen viability, and higher biomass than diploid individuals. Triploid offspring derived from diploid maternal parents had lower germination rates, but higher pollen production than those with tetraploid mothers. Relative to diploids, the cumulative fitness of 2 x × 4 x triploids and 4 x × 2 x triploids was 0.12 and 0.06, respectively, providing some support for effect of differing maternal:paternal ratios and endosperm development as a mechanism of hybrid inviability. Collectively, the data show that tetraploids exhibit an inherent fitness disadvantage, although the partial viability and fertility of triploids may help to reduce the barrier to tetraploid establishment in sympatric populations.  相似文献   

15.
Theory suggests that the evolution of autotetraploids within diploid populations will be opposed by a minority-cytotype mating disadvantage. The role of triploids in promoting autotetraploid establishment is rarely considered, yet triploids are often found in natural populations and are formed in experimental crosses. Here, I evaluate the effects of triploids on autotetraploid evolution using computer simulations and by synthesizing research on the evolutionary dynamics of mixed-ploidy populations in Chamerion angustifolium (Onagraceae). Simulations show that the fate of a tetraploid in a diploid population varies qualitatively depending on the relative fitness of triploids, the ploidy of their gametes and the fitness of diploids relative to tetraploids. In general, even partially fit triploids can increase the likelihood of diploid–tetraploid coexistence and, in some cases, facilitate tetraploid fixation. Within the diploid–tetraploid contact zone of C. angustifolium , mixed populations are common (43%), and often (39%) contain triploids. Greenhouse and field studies indicate that triploid fitness is low (9% of diploids) but variable. Furthermore, euploid gametes produced by triploids can be x , 2 x or 3 x and contribute the majority (62%) of new polyploids formed in each generation (2.3 × 10−3). Although triploid bridge, alone, may not account for the evolution of autotetraploidy in C. angustifolium , it probably contributes to the prevalence of mixed-ploidy populations in this species. Therefore, in contrast to hybrids in homoploid species, triploids may actually facilitate rather than diminish the fixation of tetraploids by enhancing the rate of formation.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 537–546.  相似文献   

16.
Conspecific pollen precedence can be a strong reproductive barrier between polyploid and diploid species, but the role of genome multiplication in the evolution of this barrier has not been investigated. Here, we examine the direct effect of genome duplication on the evolution of pollen siring success in tetraploid Chamerion angustifolium. To separate the effects of genome duplication from selection after duplication, we compared pollen siring success of synthesized tetraploids (neotetraploids) with that of naturally occurring tetraploids by applying 2x, 4x (neo or established) or 2x + 4x pollen to diploid and tetraploid flowers. Seed set increased in diploids and decreased in both types of tetraploids as the proportion of pollen from diploid plants increased. Based on offspring ploidy from mixed-ploidy pollinations, pollen of the maternal ploidy always sired the majority of offspring but was strongest in established tetraploids and weakest in neotetraploids. Pollen from established tetraploids had significantly higher siring rates than neotetraploids when deposited on diploid (4x(est) = 47.2%, 4x(neo) = 27.1%) and on tetraploid recipients (4x(est) = 91.9%, 4x(neo) = 56.0%). Siring success of established tetraploids exceeded that of neotetraploids despite having similar pollen production per anther and pollen diameter. Our results suggest that, while pollen precedence can arise in association with the duplication event, the strength of polyploid siring success evolves after the duplication event.  相似文献   

17.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

18.
Summary The microdistribution of diploid and tetraploid plants of Dactylis glomerata L. was examined and related to their immediate environment in several sites in central Galicia, where morphologically indistinguishable individuals of both ploidies grow in sympatry. The two related cytotypes differed in habitat preference. Diploids were mainly confined to the low-density forest-floor habitat in woodlands of mostly ancient origin, whereas tetraploids were widespread in varied habitats but clearly predominant in open areas, particularly in disturbed anthropic sites. The in situ comparison of plant performance showed that where plants of each ploidy were more common they produced more tillers, panicles and seeds. This habitat preference closely reflected differences in life-history characteristics. The tetraploids had an early and short flowering time almost always completed before the aestival drought, whereas the diploids began to flower several weeks later and flowered throughout the drought. Comparisons along artificial gradients of soil water availability and light transmittance indicated that the cytotypes had distinct physiological requirements which probably originated in metabolic and more general genetic differentiation and could be directly attributable to ploidy. Habitat differentiation increases the species' colonizing ability. It also amplifies divergence in reproductive strategy between diploids and tetraploids, which reduces ineffective crossing between cytotypes and thereby permits them to coexist in sympatry. The effect of hybridization at the polyploid level on the differentiation between cytotypes was assessed from the recent introduction of a foreign tetraploid entity into the study area. Hybridization between the two distinct tetraploids was found to increase habitat differentiation between the diploids and the tetraploids, but the major part of this differentiation is probably attributable to ploidy itself.  相似文献   

19.
Reproductive behaviour and the pathways of gene flow among ploidy levels were studied experimentally inTaraxacum sect.Ruderalia. Diploid, triploid and tetraploid individuals were sampled from mixed diploid — polyploid natural populations. 136 experimental hybridizations between the plants of different ploidy levels were performed. Seeds resulting from these crosses, those obtained from isolated anthodia as well as from open pollinated anthodia (both from cultivated and wild plants) were subjected to the flow-cytometric seed screening (FCSS) to determine ploidy levels in the progeny and to infer breeding behaviour of maternal plants. Three possible pathways of the gene flow were studied: (A) fertilization of sexuals by pollen of apomicts, (B) BIII hybrid formation, (C) facultative apomixis. Diploid maternal plants when experimentally crossed with triploid pollen donors produced diploids and polyploid progeny, while when pollinated with a mixture of the pollen of diploids and triploids or insect pollinated, no polyploids were discovered. It seems that in the mixture with the pollen of diploids, the pollen of triploids is ineffective. Tetraploids produce hybrids much easier with diploid mothers and their role in wild populations requires further study. Triploid mothers, even those with subregular pollen did not show traces of facultative apomixis. BIII hybrids were present in the progeny of both triploids and tetraploids, in tetraploids in quite high percentages (up to 50% of the progeny in some crosses).  相似文献   

20.
Dalea formosa consists of diploids (n = 7), tetraploids (n = 14), and hexaploids (n = 21), the polyploids restricted to the Chihuahuan Desert region or its immediate borders. There is very little morphological differentiation between the three chromosome races and, therefore, the polyploids are assumed to be primarily autoploid. Tetraploids discovered were few and were very similar to hexaploids; the two ploidy levels were combined as “polyploids” for analyses of geographically and cytologically correlated morphological variation. Pollen length generally was found to be greater in known polyploids than in known diploids. Through the use of pollen length and geographic origin, chromosomally unknown specimens were estimated as to ploidy level. This produced four groups, known diploids and polyploids, and putative diploids and polyploids, which were then subjected to stepwise discriminant analysis (SDA) to search for other morphological characters that might indicate ploidy level, to evaluate the assignments to putative ploidy level in unknown plants, and to assess correlation of these plants of putative ploidy level to geographic regions. SDA also indicated that pollen length, among ten morphological features, is the primary discriminator between ploidy levels, and that putative polyploids are confined primarily to the Chihuahuan Desert. Chromosomally unknown specimens that were originally assigned to one ploidy level, but were classified by SDA as another, are viewed as indicative of areas where further cytological sampling is particularly needed. These areas are southeastern Arizona, where pollen among known diploids is comparatively large, northeastern New Mexico, where polyploids might occur off the Chihuahuan Desert, east edge of the Chihuahuan Desert in Texas, a cytologically poorly sampled contact zone between diploids and polyploids, and central Coahuila, where no cytological sampling has been done. Canonical variate analysis is used to aid in the visualization of the general morphological relationship between diploids and polyploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号