首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生命周期管理研究述评   总被引:5,自引:2,他引:3  
黄和平 《生态学报》2017,37(13):4587-4598
生命周期管理起源于生命周期思想,它是生命周期思想在实践中的具体应用,是面向可持续生产和消费,对产品、工艺和服务的全生命周期环境影响进行的综合管理,是解决复合生态系统中结构无序、效率不高和代谢冗余的有效途径,是基于生命周期评价原则与框架的一种环境管理手段或环境管理体系。全面回顾了生命周期管理的起源与内涵,阐述了生命周期管理与生命周期评价的区别与联系,梳理了生命周期管理与环境管理体系的关系。对生命周期管理在产品、企业、行业及城市等层次上的具体应用进行了总结与述评,并对其今后需深入研究的方向进行了展望。  相似文献   

2.
Social life cycle assessment (S‐LCA) has been discussed for some years in the LCA community. We raise two points of criticism against current S‐LCA approaches. First, the development of S‐LCA methodology has not, to date, been based on experience with actual case studies. Second, for social impacts to be meaningfully assessed in a life cycle perspective, social indicators need to be unambiguously interpreted in all social contexts along the life cycle. We here discuss an empirically based approach to S‐LCA, illustrated by a case study of an automobile airbag system. The aim of the case study is to compare the injuries and lives lost during the product life cycle of the airbag system (excluding waste handling impacts) with the injuries prevented and lives saved during its use. The indicator used for assessing social impacts in this study is disability‐adjusted life years (DALY). The results from this study indicate that the purpose of an airbag system, which is to save lives and prevent injuries, is justified also in a life cycle perspective.  相似文献   

3.
The environmental impact of the water consumption of four typical crop rotations grown in Spain, including energy crops, was analyzed and compared against Spanish agricultural and natural reference situations. The life cycle assessment (LCA) methodology was used for the assessment of the potential environmental impact of blue water (withdrawal from water bodies) and green water (uptake of soil moisture) consumption. The latter has so far been disregarded in LCA. To account for green water, two approaches have been applied: the first accounts for the difference in green water demand of the crops and a reference situation. The second is a green water scarcity index, which measures the fraction of the soil‐water plant consumption to the available green water. Our results show that, if the aim is to minimize the environmental impacts of water consumption, the energy crop rotations assessed in this study were most suitable in basins in the northeast of Spain. In contrast, the energy crops grown in basins in the southeast of Spain were associated with the greatest environmental impacts. Further research into the integration of quantitative green water assessment in LCA is crucial in studies of systems with a high dependence on green water resources.  相似文献   

4.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

5.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

6.
This article presents an approach to estimate missing elements in hybrid life cycle inventories. Its development is motivated by a desire to rationalize inventory compilation while maintaining the quality of the data. The approach builds on a hybrid framework, that is, a combination of process‐ and input–output‐based life cycle assessment (LCA) methodology. The application of Leontief's price model is central in the proposed procedure. Through the application of this approach, an inventory with no cutoff with respect to costs can be obtained. The formal framework is presented and discussed. A numerical example is provided in Supplementary Appendix S1 on the Web.  相似文献   

7.
Background, Aim and Scope Societal assessment is advocated as one of the three pillars in the evaluation of, and movement toward, sustainability. As is the case with the well established LCA, and the emerging LCC, societal life cycle assessment should be developed in such as way as to permit relative product comparisons, rather than absolute analyses. The development of societal life cycle assessment is in its infancy, and important concepts require clarification including the handling of the more than two hundred social indicators. Therefore, any societal life cycle assessment methodology must explain why it is midpoint- or endpoint-based as well as its reasons to be complimentary with, or included within, life cycle assessment. Materials and Methods: A geographically specific midpoint based societal life cycle assessment methodology, which employs labour hours as an intermediate variable in the calculation has been developed and evaluated against an existing LCA comparing two detergents. The methodology is based on using an existing life cycle inventory and, therefore, has identical system boundaries and functional units to LCA. The societal life cycle assessment methodology, much like LCA, passes from inventory, through characterisation factors, to provide an ultimate result. In analogy to economics and cost estimation, societal life cycle assessment combines, into its statistics, both data as well as estimates, some of which are correlated to elements of the LCI. It focuses on the work hours required to meet basic needs.A geographically specific midpoint based societal life cycle assessment methodology, which employs labour hours as an intermediate variable in the calculation has been developed and evaluated against an existing LCA comparing two detergents. The methodology is based on using an existing life cycle inventory and, therefore, has identical system boundaries and functional units to LCA. The societal life cycle assessment methodology, much like LCA, passes from inventory, through characterisation factors, to provide an ultimate result. In analogy to economics and cost estimation, societal life cycle assessment combines, into its statistics, both data as well as estimates, some of which are correlated to elements of the LCI. It focuses on the work hours required to meet basic needs. Results: The societal life cycle assessment of an appended case study indicates that Detergent 2 generates, relative Detergent 1, approximately 20% less employment in Russia, 35% less in France, and approximately five times more in Canada and South Africa, the latter derived from its higher aluminium content. There is essentially no difference in the employment in the use country (Switzerland) nor in Morocco, where some of the waste disposal was assumed to take place. Discussion: Given that housing is more affordable, in terms of shelter units per labour hour, in South Africa, compared to Europe, it is, therefore, of no surprise that Detergent 2 provides a societal benefit in terms of housing. Detergent 2 does, however, result in dematerialization, in that its environmental impact is lower (LCI). Therefore, as less resources are employed and labour required, in extraction, production and transport, the societal benefits in health care, education and necessities, a grouped variable, are lower for Detergent 2. This is despite the employment shift away from Europe and to less 'developed' regions. Conclusions: The assessment of societal impacts involves several hundred specific indicators. Therefore, aggregation is, if not impossible, at least heavily value laden and, therefore, not recommended. The impact of a societal action, derived from a product purchase or otherwise, is also highly local. Given this, societal life cycle assessment, carried through to the midpoints, and based on an existing LCI, has been developed as a methodology. The results, for an existing LCA-detergent case, illustrate that societal life cycle assessment provides a means to investigate how policy and policy makers can be linked to sustainable development. The sensitivity analyses also clarify the decisions in regards to product improvement. Recommendations and Perspectives: The goal of societal life cycle assessment is not to make decisions, but rather to point out tradeoffs to decision- or policy-makers. This case, and the methodology that it is based on, permit such a comparison. Substituting Detergent 2 for Detergent 1 reduces resource use at the expense of an increase in atmospheric and terrestrial emissions. Access to housing is improved, though at the expense of education, health care and necessities. As a recommendation, one would look at the fact that the majority of indicators are superior for Detergent 2 relative to Detergent 1and seek to improve the aqueous emissions in Detergent 2 via a change in the formulation. An energy or fossil fuel substitution at the site of production could also improve the societal benefits in terms of education and health care. While societal life cycle assessment remains in its infancy, a methodology does exist. The field can, therefore, be viewed in a similar way to LCA in the early 1990s, with a need to validate, consolidate and, ultimately, built toward a standard. The contribution is aimed at contributing to such a discussion and therefore proposes that a societal life cycle assessment be LCI-derived, geographically specific, based on mid-points, and use employment as an intermediate variable.  相似文献   

8.
There is an increasing worldwide concern about the problem of dealing with the waste electrical and electronic equipment (WEEE), given the high volume of appliances that are disposed of every day. In this article, an environmental evaluation of WEEE is performed that combines life cycle assessment (LCA) methodology and multivariate statistical techniques. Because LCA handles a large number of data in its different phases, when one is trying to uncover the structure of large multidimensional data sets, multivariate statistical techniques can provide useful information. In particular, principal‐component analysis and multidimensional scaling are two important dimension‐reducing tools that have been shown to be of help in understanding this type of complex multivariate data set. In this article, we use a variable selection method that reduces the number of categories for which the environmental impacts have to be computed; this step is especially useful when the number of impact categories or the number of products or processes to benchmark increases. We provide a detailed illustration showing how we have used the proposed approach to analyze and interpret the environmental impacts of different domestic appliances.  相似文献   

9.
This article presents the results of an experimental activity aimed at investigating the technical feasibility and the environmental performance of using municipal solid waste incineration bottom ash to produce glass frit for ceramic glaze (glaze frit). The process includes an industrial pretreatment of bottom ash that renders the material suitable for use in glaze frit production and allows recovery of aluminum and iron. The environmental performance of this treatment option is assessed with the life cycle assessment (LCA) methodology. The goal of the LCA study is to assess and compare the environmental impacts of two scenarios of end of life of bottom ash from municipal solid waste incineration (MSWI): landfill disposal (conventional scenario) and bottom ash recovery for glaze frit production (innovative scenario). The main results of the laboratory tests, industrial simulations, and LCA study are presented and discussed, and the environmental advantages of recycling versus landfill disposal are highlighted.  相似文献   

10.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

11.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

12.
13.

Purpose

Small and medium enterprises (SMEs) account for 99 % of companies operating in the European food and drink industry and, often, are part of highly fragmented and complex food chains. The article focuses on the development of a social impact assessment methodology for SMEs in selected food and drink products as part of the EU-FP7 SENSE research project. The proposed methodology employs a top-down and bottom-up approach and focuses on labour rights/working conditions along the product supply chain as the key social impact indicator, limiting key stakeholder classification to workers/employees and local communities impacted by the production process. Problems related to this emerging field are discussed, and questions for further research are expounded.

Methods

The article reviews both academic and ‘grey’ literature on life cycle assessment (LCA) and its relationship to social LCA (S-LCA) and SMEs at the beginning of 2013 and includes case study evidence from the food sector. A pilot questionnaire survey sent to European food and drink sector SMEs and trade associations (as partners in the research project) about their knowledge, experience and engagement with social impacts is presented. Proposals are elaborated for a social impact assessment methodology that identifies the key data for SMEs to collect.

Results and discussion

The literature reveals the complexity of the S-LCA approach as it aims to unite disparate and often conflicting interests. Findings from the pilot questionnaire are discussed. Using a top-down and bottom-up approach, the proposed methodology assesses data from SMEs along the supply chain in order to gauge social improvements in the management of labour-related issues for different product sectors. Issues relating to the ‘attributional’ choice of a social impact indicator and key stakeholder categories are discussed. How ‘scoring’ is interpreted and reported and what the intended effect of its use will be are also elaborated upon.

Conclusions

Whilst recognising the difficulty of devising a robust social impact assessment for SMEs in the food and drink sector, it is argued that the proposed methodology makes a useful contribution in this fast-emerging field.  相似文献   

14.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

15.
In recent literature, prospective application of life cycle assessment (LCA) at low technology readiness levels (TRL) has gained immense interest for its potential to enable development of emerging technologies with improved environmental performances. However, limited data, uncertain functionality, scale up issues and uncertainties make it very challenging for the standard LCA guidelines to evaluate emerging technologies and requires methodological advances in the current LCA framework. In this paper, we review published literature to identify major methodological challenges and key research efforts to resolve these issues with a focus on recent developments in five major areas: cross‐study comparability, data availability and quality, scale‐up issues, uncertainty and uncertainty communication, and assessment time. We also provide a number of recommendations for future research to support the evaluation of emerging technologies at low technology readiness levels: (a) the development of a consistent framework and reporting methods for LCA of emerging technologies; (b) the integration of other tools with LCA, such as multicriteria decision analysis, risk analysis, technoeconomic analysis; and (c) the development of a data repository for emerging materials, processes, and technologies.  相似文献   

16.
Temporal aspects have traditionally not been recognized adequately in life cycle assessment (LCA). The dynamic LCA model recently proposed offers a significant step forward in the dynamic assessment of global warming impacts. The results obtained with dynamic LCA are highly sensitive to the choice of a time horizon. Therefore, decision making between alternative systems can be critical because conclusions are dependent on the specific time horizon. In this article, we develop a decision‐making methodology based on the concept of time dominance. We introduce instantaneous and cumulative time dominance criteria to the dynamic LCA context and argue why the dominance of an alternative should also imply preference. Our approach allows for the rejection of certain alternatives without the determination of a specific time horizon. The number of decision‐relevant alternatives can thereby be reduced and the decision problem facilitated. We demonstrate our methodology by means of a case study of end‐of‐life alternatives for a wooden chair derived from the original authors of dynamic LCA and discuss the implications and limitations of the approach. The methodology based on time dominance criteria is supplementary to the dynamic LCA model, but does not substitute it. The overall value of this article stretches beyond LCA onto more general assessments of global warming, for example, in policy where the choice of a time horizon is equally significant.  相似文献   

17.
Applications of information and communications technology (ICT) for the management of environmental data, if used during the design and at the end of the product life cycle, can improve the environmental performance of products. This specific application of ICT for data management is called product data technology (PDT) and is based on the use of international standards developed by ISO TC184/SC4. PDT enables the computerized representations of information about products, processes, and their properties that are independent of any proprietary computer system or software application. The standard product data models are designed to integrate the necessary information about materials used in the product, and such information can be accessed and used at any point in the life cycle, from design to disposal. In the article, we present how PDT can support life cycle assessment (LCA) by focusing on a series of standards for communicating data for design and manufacture and standards for business and commercial information. Examples of possibilities for using PDT and semantic web for LCA data are introduced. The findings presented here are based on DEPUIS (Design of Environmentally‐Friendly Products Using Information Standards), a project aimed at improving the eco‐design of new products and services through the innovative use of new information standards.  相似文献   

18.
Intention, Goal and Scope: Dealing with data gaps, data asymmetries, and inconsistencies in life cycle inventories (LCI) is a general prohlem in Life Cycle Assessment (LCA) studies. An approach to deal with these difficulties is the simplification of LCA. A methodology that lowers the requirements for data quality (accuracy) for process emissions within a simplified LCA is introduced in this article. Background: Simplification is essential for applying LCA in the context of design for environment (DfE). The tool euroMat is a comprehensive DfE software tool that is based on a specific, simplified LCA approach, the Iterative Screening LCA (IS-LCA). Within the scope of the IS-LCA, there is a quantitative assessment of energy-related processes, as well as a semi-quantitative assessment of non-energy related emissions which supplement each other. Objectives: The semi-quantitative assessment, which is in the focus of this article, aims at lowering the requirements for the quality of non-energy related emissions data through combined use of qualitative and quantitative inventory data. Methods: Potential environmental impacts are assessed based on ABC-categories for qualities (harmfulness) of emissions and XYZ-categories for quantities of emitted substances. Employing statistical methods assignment rules for the ABC/XYZ-categories were derived from literature data and databases on emissions to air, water, and soil. Statistical tests as well as a DfE case study (comparing the materials aluminum and carbon fiber reinforced epoxy for a lightweight container to be used in an aerospace application) were conducted in order to evaluate the level of confidence and practicality of the proposed, simplified impact assessment. Results: Statistical and technical consistency checks show that the method bears a high level of confidence. Results obtained by the simplified assessment correlate to those of a detailed quantitative LCA. Conclusions: Therefore, the application of the ABC/XYZ-categories (together with the cumulative energy demand) can be considered a practical and consistent approach for determining the environmental significance of products when only incomplete emission data is available. Future Prospects: The statistical base of the method is expanded continuously since it is an integral part of the DfE software tool euroMat, which is currently being further developed. That should foster the application of the method. Outside DfE, the method should also be capable of facilitating simplified LCAs in general.  相似文献   

19.
As part of the Cradle to Cradle® (C2C) certification program, the C2C certification criterion, Renewable Energy and Carbon Management (RE&CM), focuses on use of electricity from renewable energy (RE) and direct greenhouse gas offsets in the manufacturing stage and, to a limited extent, on the cradle to gate only at the highest level of certification. The aim of this study is to provide decision makers with a quantified overview of possible limitations of that C2C certification requirement and potential gains by introducing a full life cycle assessment (LCA) perspective to the scheme. Scenario analysis was used to perform an LCA of an aluminum can system representing different levels of the C2C certification criterion, RE&CM, considering different strategies to achieve 100% RE in the manufacturing stage. The adoption of a broader life cycle RE perspective was considered through the implementation of electricity from renewable sources from cradle to grave. Our results show that compliance with the current RE&CM certification framework offers limited benefits, that is, significant reduction for climate change, but negligible reductions for other environmental impacts (e.g., particulate matter and acidification). However, increasing the share of RE in the primary aluminum production from a full life cycle perspective can greatly increase the environmental benefits brought up by the C2C certification not only for climate change, but also for the broader range of impact categories. In our striving toward environmental sustainability, which often cannot be approximated by climate‐change impacts alone, we therefore recommend decision makers in industries to combine the C2C certification with LCA when they define strategies for the selection of RE and raw materials suppliers.  相似文献   

20.
Life cycle assessment (LCA) is a quantitative tool used to evaluate the environmental impacts of products or processes. With respect to buildings, LCA can be used to evaluate the environmental impacts of an entire building's life cycle. Currently LCA in the building area is used in a limited capacity, primarily to select building products. In order to determine the causality for the lack of whole‐building LCAs, focus groups with members of the architecture, engineering, and construction (AEC) communities were held. This article investigates the current level of knowledge of LCA in the AEC community and then discusses the benefits and barriers to the practice of LCA. In summary, the goal of the research was to identify why LCA is not used to its fullest potential in a whole‐building LCA. In an open forum and moderated setting, focus group participants were asked individually to self‐identify their experience with LCA, a brief education session on LCA was held, and then benefits and barriers to LCA were discussed. The focus group sessions were transcribed and systematically coded by social researchers in order to analyze the results. Hybrid flow and radar charts were developed. From the focus group results, the most important benefit to LCA was “provides information about environmental impacts.” The results did not identify a prominent barrier; however, building‐related metrics were ascertained to be one of the more crucial barriers. The benefits and barriers classified by this analysis will be utilized to develop a subsequent online survey to further understand the LCA and AEC community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号