首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 121 毫秒
1.
不同质地土壤对花生根系生长、分布和产量的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
为了探究土壤类型与花生(Arachis hypogaea)根系生长及产量之间的关系, 采用箱栽的方法, 研究了不同质地土壤(砂土、壤土、黏土)对花生根系生长、分布和产量的影响。砂土和壤土中花生根系干物质重各时期均显著高于黏土中, 但生育后期黏土中花生根系干物质重比壤土和砂土下降相对较慢。从不同类型土壤质地根系分布及根系活力来看, 黏土根系主要分布在上层土壤, 但上层土壤根系活力后期下降慢; 砂土有利于花生根系向深层土壤生长, 但上层土壤根系活力后期下降快; 而壤土对花生根系生长和活力时空分布的影响介于黏土和砂土之间。砂土有利于花生荚果的膨大, 且花生荚果干物质积累早而快, 但后期荚果干物质重积累少; 壤土的花生荚果干物质积累中后期多, 黏土则在整个生育期均不利于花生荚果干物质积累。最终荚果产量、籽仁产量和有效果数均表现为壤土最大、砂土次之、黏土最小。研究表明通气性和保肥保水能力居中的壤土更适合花生的根系生长发育及产量的形成。  相似文献   

2.
Effects of soil drought or waterlogging on the morphological traits of the root system and internal root anatomy were studied in maize hybrids of different drought tolerance. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system and some traits of the anatomical structure of the seminal root. Obtained results have demonstrated a relatively broad variation in the habit of the root system. This mainly refers, to the number, length and dry matter of lateral roots, developed by seminal root, seminal adventitious and nodal roots as well as to some anatomical properties of the stele, cortex and metaxylem elements. Plants grown under waterlogging or drought conditions showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effect of waterlogging conditions on the growth of roots was greater when compared with that of plants exposed to drought. In the measurements of the root morphological traits, the effect of soil drought on the internal root anatomical characteristic was weaker than the effect of soil waterlogging. The observed effects of both treatments were more distinct in a drought sensitive hybrid Pioneer D than in drought resistant Pioneer C one. The drought resistant hybrid Pioneer C distinguished by a more extensive rooting and by smaller alterations in the root morphology caused by the stress conditions than drought sensitive hybrid Pioneer D one. Also the differences between the resistant and the sensitive maize hybrids were apparent for examined root anatomical traits. Results confirm that the hybrid Pioneer D of a high drought susceptibility was found to be also more sensitive to periodieal soil water excess. A more efficient water use and a lower shoot to root (S:R) ratio were found to be major reasons for a higher stress resistance of the hybrid Pioneer C. The reasons for a different response of the examined hybrids to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant genotype. The observed modifications of the internal root structure caused by water deficit in plant tissues may partly influence on water conductivity and transport within roots. The results suggest that the morphological and anatomical traits of the maize root system may be used in practice as direct or indirect selection criteria in maize breeding.  相似文献   

3.
Inadequate oxygen concentration in the root zone is a constraint to plant performance particularly in heavy, compacted and/or saline soils. Sub-surface drip irrigation (SDI) offers a means of increasing oxygen to plant roots in such soils, provided irrigation water can be hyper-aerated or oxygenated. Hydrogen peroxide (HP) at the rate of 5 litre ha−1 at the end of each irrigation cycle was injected through SDI tape to a field-grown zucchini (courgette) crop (Cucurbita pepo) on a saturated heavy clay soil in Queensland, Australia. Fruit yield, number and shoot weight increased by 25%, 29% and 24% respectively due to HP treatment compared to the control. Two pot experiments with vegetable soybean (Glycine max) and cotton (Gossypium hirsutum) compared the effectiveness of HP and air injection using a Mazzei air injector (a venturi), throughout the irrigation cycle in raising crop yield in a heavy clay soil kept at saturation or just under field capacity. Fresh pod yield of vegetable soybean increased by 82–96% in aeration treatments compared with the control. The yield increase was associated with more pods per plant and greater mean pod weight. Significantly higher above ground biomass and light interception were evident with aeration, irrespective of soil water treatment. Similarly cotton lint yield increased by 14–28% in aeration treatments compared with the control. The higher lint yield was associated with more squares and bolls per plant which accompanied greater above ground biomass and an increase in root mass, root length and soil respiration. Air injection and HP effected greater water use, but also brought about an enhancement of water use efficiency (WUE) for pod and lint yield, and increased leaf photosynthetic rate in both species but had no effect on transpiration rate and stomatal conductance per unit leaf area. Aeration-induced enhanced root function was arguably responsible for greater fruit set and yield in all three crops, while in vegetable soybean greater canopy cover, radiation interception and total vegetative biomass were responsible for additional yield benefit. Increased aeration of the root zone in heavy clay soils employing either air injection or HP proved beneficial to SDI irrigated crops, irrespective of the soil water conditions, and can add value to grower investments in SDI.  相似文献   

4.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

5.
Adaptation to severe drought and to irrigated cropping can both contribute to increased water use efficiency of lucerne, but knowledge on the relevant adaptive traits is limited. Five cultivars featuring contrasting adaptive responses for 3‐year forage yield across 10 agricultural environments of the western Mediterranean basin were currently studied, to identify physiological and morphological traits associated with specific and wide‐adaptation responses. The landraces Mamuntanas, Demnat 203 and Erfoud 1, and the varieties SARDI 10 and Prosementi, were grown in replicated metal containers (55 cm long × 12 cm wide × 75 cm deep; 21 plants per container) under irrigation (weekly restoring soil field capacity) and under moderate and severe drought stress (implying decreased irrigation for 30 days followed by withheld irrigation for 33 and 58 days, respectively). Cultivar post‐stress survival reflected the known cultivar adaptation to drought‐prone agricultural environments. Demnat 203, specifically adapted to irrigated, frequently mown environments, displayed higher amounts of starch, soluble proteins and total nitrogen in the crown and the root under irrigation. This was due to outstanding organ size and, for starch, higher concentrations. Mamuntanas, specifically adapted to drought‐prone environments, exhibited high water‐soluble carbohydrate concentration in storage organs under severe stress, along with a water‐conservation strategy implying less water used in initial drought‐stress phases due to limited early root development that resulted in more water available under severe stress. Drought‐tolerant germplasm also displayed lower wilting under early stress, more plants with green tissues under severe stress, and more stems per plant in stress or favourable conditions. Multivariate patterns of cultivar variation for physiological and morphological traits were strictly associated with cultivar variation for adaptation pattern. Our results highlighted the difficulty to combine some traits of environment‐specific adaptive value into a unique widely adapted variety, supporting the selection of varieties specifically adapted to irrigated or severely drought‐prone environments.  相似文献   

6.
Drought resistance of rice is a complex trait and is mainly determined by mechanisms of drought avoidance and drought tolerance. The present study was conducted to characterize the genetic basis of drought resistance at reproductive stage in field by analyzing the QTLs for drought response index (DRI, normalized by potential yield and flowering time), relative yield, relative spikelet fertility, and four traits of plant water status and their relationships with root traits using a recombinant inbred population derived from a cross between an indica rice and upland rice. A total of 39 QTLs for these traits were detected with individual QTL explained 5.1–32.1% of phenotypic variation. Only two QTLs for plant water status were commonly detected in two environments, suggesting different mechanisms might exist in two types of soil conditions. DRI has no correlation with potential yield and flowering time under control, suggesting that it can be used as a good drought resistance index in field conditions. The co-location of QTLs for canopy temperature and delaying in flowering time suggested a usefulness of these two traits as indexes in drought resistance screening. Correlation and QTL congruence between root traits and putative drought tolerance traits revealed that drought avoidance (via thick and deep root traits) was the main genetic basis of drought resistance in sandy soil condition, while drought tolerance may play more role in the genetic basis of drought resistance in paddy soil condition. Therefore, both drought mechanisms and soil textures must be considered in the improvement of drought resistance at reproductive stage in rice.  相似文献   

7.
改变土壤根系的分布以汲取深层土壤水分的能力是植物避免干旱的主要策略。山黧豆是一种抗逆性强的豆类作物,该研究通过起垄条播控制性沟灌的方式,设置传统灌溉(FI)、交替灌溉(PRD,灌水量减少50%)和不灌溉(NI)3种处理模式,探索不同灌溉模式对播种后不同时期山黧豆土壤水分、根系分布、叶片气体交换、水分利用效率和籽粒产量的影响。结果表明:(1)在FI、PRD和NI处理下,山黧豆的根系分别有89.8%、86.9%和84.9%生长在0~20 cm的表层土壤中;干旱胁迫使PRD和NI处理下深层土壤中根系的比例提高至13.05%和15.07%。(2)在整个生育期内,土壤干旱显著降低了山黧豆叶片的净光合速率、蒸腾速率和气孔导度;在种植后60 d时,PRD和NI处理下叶片的瞬时水分利用效率分别较FI处理显著提高了21.4%和14.9%。(3)干旱胁迫显著降低了山黧豆植株高度、第一豆荚高、平均结荚数和豆粒数以及地上部和根系的干重,但显著增加了根冠比;PRD处理对豆荚长度、豆荚重和每荚豆粒重没有显著影响;PRD和NI处理下山黧豆平均籽粒产量分别比FI处理显著降低了53%和63%。研究发现,在干旱胁迫条件下,山黧豆能够通过提高深层土壤中根系的比例、更多吸收深层土壤水分、显著增加根冠比以及显著提高生殖生长期叶片的瞬时水分利用效率,减轻干旱胁迫对自身生长的影响。该研究结果可为山黧豆在旱区推广种植提供理论依据。  相似文献   

8.
乔振江  蔡昆争  骆世明 《生态学报》2011,31(19):5578-5587
土壤缺磷和季节性干旱已经成为南方酸性红壤地区大豆生产的主要限制因素之一。选取2个大豆品种巴西10号(磷高效)和本地2号(磷低效),研究其在不同磷素(0,15, 30 mg/kg P)和水分处理(分别在开花期和结荚期进行干旱胁迫)下的反应,从植株生物量、叶绿素含量、磷效率指标等方面研究不同基因型大豆对水磷耦合胁迫的适应机制。研究结果表明,随着土壤磷素水平的增加,两个品种的生物量和叶片叶绿素含量显著增加,根冠比则显著下降。在同一磷素水平处理下,干旱胁迫则导致较高的根冠比,对叶片叶绿素含量影响不大,两个品种表现一致。两个基因型大豆受到干旱胁迫后,其产量均显著低于正常水分处理。中等施磷能显著提高两个大豆品种的产量,但高磷处理对产量的增加幅度有限,甚至高磷处理还造成本地2号减产。巴西10号的产量随土壤中磷素的增加而增加,而本地2号的产量则为中磷>高磷>低磷,不管是磷处理还是水分处理,巴西10号的产量均高于本地2号。无论是花期干旱还是结荚期干旱,巴西10号和本地2号的根磷效率比、磷吸收效率及磷转移效率均随土壤磷浓度的增加而增加,磷利用效率则降低。总体上来讲,巴西10号的磷吸收效率和利用效率高于本地2号,而根磷效率比、磷转移效率则小于本地2号。  相似文献   

9.
Although root architecture has been shown to play an important role in crop performance, particularly under drought conditions, no information is available on the genetic control of root traits in durum wheat, a crop largely grown in rainfed areas with low rainfall. In our study, a panel of 57 elite durum wheat accessions were evaluated under controlled conditions for root and shoot traits at the seedling stage. Significant genetic variability was detected for all the root and shoot traits that were investigated. Correlation analysis suggested that root and shoot features were only partially controlled by common sets of genes. The high linkage disequilibrium (up to 5 cM) present in the germplasm collection herein considered allowed us to use simple sequence repeat‐based association mapping to identify chromosome regions with significant effects on the investigated traits. In total, 15 chromosome regions showed significant effects on one or more root architectural features. A number of these regions also influenced shoot traits and, in some cases, plant height measured in field conditions. Major effects were detected on chromosome arms 2AL (at Xgwm294), 7AL (at Xcfa2257 and Xgwm332) and 7BL (at Xgwm577 and Xcfa2040). The accessions with the most remarkable differences in root features will provide a valuable opportunity to assemble durum wheat mapping populations well suited for ascertaining the effects of root architecture on water use efficiency and grain yield.  相似文献   

10.
不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应   总被引:11,自引:0,他引:11  
丁红  张智猛  戴良香  宋文武  康涛  慈敦伟 《生态学报》2013,33(17):5169-5176
为明确不同抗旱性花生品种的根系形态发育特征,探讨其根系形态发育特征对不同土壤水分状况的响应机制,在防雨棚旱池内进行土柱栽培试验,研究抗旱型品种“花育22号”、“唐科8号”和干旱敏感型品种“花育23号”3个不同抗旱性花生品种根系形态发育特征及其对干旱胁迫的响应.结果表明:抗旱型品种根系较发达,具有较大的根系生物量、总根长、总根系表面积.干旱胁迫使抗旱型品种根系总表面积和体积增加,而干旱敏感型品种则相反.干旱胁迫显著增加抗旱型品种“花育22号”20 cm以下土层内根长密度分布比例及根系表面积和体积,但“唐科8号”相应根系性状仅在20-40 cm土层内增加;干旱胁迫使干旱敏感型品种“花育23号”40 cm以下土层内各根系性状升高,但未达显著水平且其深层土壤内各根系性状增加幅度小于“花育22号”.花生根系总长、总表面积及0-20 cm土层内根系性状与产量间呈显著或极显著正相关.土壤水分亏缺条件下,花生主要通过增加深层土壤内根长、根系表面积和体积等形态特性,优化空间分布构型,以调节植株对水分的利用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号