首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Initial ball flight characteristics of curve and instep kicks were investigated. Fifteen international female footballers performed curve and instep kicks from a distance of 20 m from goal and at a 1 m2 target. Seventeen Vicon cameras tracked three-dimensional coordinates of four reflective markers adhered to the ball. Ball flight characteristics were quantified, and the coordinates of the ball relative to the target center were recorded. The lateral launch angle and the angle of the spin axis relative to the horizontal best predicted the horizontal placement of the ball relative to the target. The vertical launch angle, antero-posterior velocity and amount of backspin best predicted the vertical coordinate. Regression models demonstrated how carefully controlled the flight characteristics must be with launch angles constrained within 3° to hit the target. Curve kicks were characterized by significantly greater lateral and vertical launch angles, increased sidespin and spin about the antero-posterior axis, and a more vertical spin axis. This information is beneficial for coaches in training players to achieve the characteristics required to score a goal and avoid a defensive wall. For example, if players consistently kick above or below the target, these findings identify the variables that will help rectify that error.  相似文献   

2.
The aim of this study was to evaluate the reliability and sensitivity of variables for the direct assessment of kicking performance in young soccer players. One hundred and six elite young soccer players were divided into 4 age groups (12-15 years). Absolute error (AE), variable error (VE), and constant error (CE) were evaluated as the variables of kicking accuracy, whereas the kicking velocity variables involved the maximum ball velocity (BVmax) and the ball velocity during accurate kicks (BVacc). Results suggested low-to-moderate reliability of the kicking accuracy (intraclass correlation coefficient [ICC] = 0.00-0.67) and high reliability of the kicking velocity variables (ICC = 0.87-0.94). Regarding the sensitivity, most of the variables detected the differences both between the dominant and nondominant legs and among the age groups. Because the evaluated variables should have a property of face validity, the findings obtained generally suggest that AE (and perhaps VE, as the measures of kicking accuracy) and both BVmax and BVacc (as the measures of kicking velocity) could be used within a routine composite test of kicking performance in young elite soccer players. Further development of the evaluated composite test of kicking performance could be based on the involvement of other kicking techniques and on testing the athletes of different ages, levels of skill, or sport specialization.  相似文献   

3.
The objective of this study was to investigate the factors affecting ball velocity at the final instant of the impact phase (t1) in full instep soccer kicking. Five experienced male university soccer players performed maximal full instep kicks for various foot impact points using a one-step approach. The kicking motions were captured two dimensionally by a high-speed camera at 2,500 fps. The theoretical equation of the ball velocity at t1 given in the article was derived based on the impact dynamics theory. The validity of the theoretical equation was verified by comparing the theoretical relationship between the impact point and the ball velocity with the experimental one. Using this theoretical equation, the relationship between the impact point and the ball velocity was simulated. The simulation results indicated that the ball velocity is more strongly affected by the foot velocity at the initial instant of the impact phase than by other factors. The simulation results also indicated that decreasing the ankle joint reaction force during ball impact shifts the impact point that produces the greatest ball velocity to the toe side and decreasing the ankle joint torque during ball impact shifts the impact point that produces the greatest ball velocity to the ankle side.  相似文献   

4.
We aimed to identify differences in kicking leg and torso mechanics between groups of rugby place kickers who achieve different performance outcomes, and to understand why these features are associated with varying levels of success. Thirty-three experienced place kickers performed maximum effort place kicks, whilst three-dimensional kinematic (240 Hz) and ground reaction force (960 Hz) data were recorded. Kicking leg and torso mechanics were compared between the more successful (‘long’) kickers and two sub groups of less successful kickers (’short’ and ‘wide-left’) using magnitude-based inferences and statistical parametric mapping. Short kickers achieved substantially slower ball velocities compared with the long kickers (20.8 ± 2.2 m/s vs. 27.6 ± 1.7 m/s, respectively) due to performing substantially less positive hip flexor (normalised mean values = 0.071 vs. 0.092) and knee extensor (0.004 vs. 0.009) joint work throughout the downswing, which may be associated with their more front-on body orientation, and potentially a lack of strength or intent. Wide-left kickers achieved comparable ball velocities (26.9 ± 1.6 m/s) to the long kickers, but they were less accurate due to substantially more longitudinal ball spin and a misdirected linear ball velocity. Wide-left kickers created a tension arc across the torso and therefore greater positive hip flexor joint work (normalised mean = 0.112) throughout the downswing than the long kickers. Whilst this may have assisted kicking foot velocity, it also induced greater longitudinal torso rotation during the downswing, and may have affected the ability of the hip to control the direction of the foot trajectory.  相似文献   

5.
Goal scoring represents the ultimate purpose of soccer and this is achieved when players perform accurate kicks. The purpose of the present study was to compare accurate and inaccurate soccer kicks aiming to top and bottom targets. Twenty-one soccer players performed consecutive kicks against top and bottom targets (0.5 m2) placed in the center of the goal. The kicking trials were categorized as accurate or inaccurate. The activation of tibialis anterior (TA), rectus femoris (RF), biceps femoris (BF) and gastrocnemius muscle (GAS) of the swinging leg and the ground reaction forces (GRFs) of the support leg were analyzed. The GRFs did not differ between kicking conditions (P > 0.05). There was significantly higher TA and BF and lower GAS EMG activity during accurate kicks to the top target (P < 0.05) compared with inaccurate kicks. Furthermore, there was a significantly lower TA and RF activation during accurate kicks against the bottom target (P < 0.05) compared with inaccurate kicks. Enhancing muscle activation of the TA and BF and reducing GAS activation may assist players to kick accurately against top targets. In contrast, players who display higher TA and RF activation may be less accurate against a bottom target. It was concluded that muscle activation of the kicking leg represents a significant mechanism which largely contributes to soccer kick accuracy.  相似文献   

6.
This study aims to analyze the difference in biomechanical properties of football players at different levels when kicking the football with the inner edge of the instep. Before the experiment, ten football players were selected; five were higher than the national level (group A), and the other five players were lower than the national level II (group B). During the experiment, the motion process was captured by a high-speed camera for biomechanical analysis. It was found that in group A, the thigh and leg swung in less time and larger amplitude, the acceleration of backswing and forward swing of the leg was larger, and the angular velocity of forward swing was also larger. At the moment of touching the ball, in the sagittal plane, the ankle joint angle and angular velocity of group A were larger than those of group B (P < 0.05). In conclusion, the high-level athletes can complete the high-quality kicking through a larger swing amplitude and speed of the kicking leg. In the training process, the athletes should pay attention to the speed and strength of the kicking leg to improve the kicking level.  相似文献   

7.
Cerebral asymmetries for spatial attention generate a bias of attention – causing lines to be bisected to the left or right in near (within reach) and far (outside reach) space, respectively. This study explored whether the rightward deviation for bisecting lines in far space extends to tasks where a ball is aimed between two goal-posts. Kicking was assessed in a laboratory and a real-life setting. In the laboratory setting, 212 participants carried out three conditions: (a) kick a soccer ball at a single goal post, (b) kick a soccer ball between two goal posts and (c) use a stick to indicate the middle between two goal posts. The goals were placed at a distance of 4.0 m. There was no deviation in the one-goal kicking condition – demonstrating that no asymmetries exist in the perceptual motor system when aiming at a single point. When kicking or pointing at the middle between two goal posts, rightward deviations were observed. In the real-world setting, the number of misses to the left or right of goal (behinds) in the Australian Rules football for the 2005–2009 seasons was assessed. The data showed more rightward deviations for kicks at goal. Combined, the studies suggest that the rightward deviation for lines placed in far space extends to the kicking of a football in laboratory and real-life settings. This asymmetry in kicking builds on a body of research showing that attentional asymmetries impact everyday activities.  相似文献   

8.
The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.  相似文献   

9.
ABSTRACT: Amiri-Khorasani, M, MohammadKazemi, R, Sarafrazi, S, Riyahi-Malayeri, S, and Sotoodeh, V. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching. J Strength Cond Res 26(11): 3010-3017, 2012-The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.  相似文献   

10.
With the aim of comparing kinematic and neuromuscular parameters of Bandal Chagui kicks between 7 elite and 7 subelite taekwondo athletes, nine Bandal Chaguis were performed at maximal effort in a selective reaction time design, simulating the frequency of kicks observed in taekwondo competitions. Linear and angular leg velocities were recorded through 3D motion capture system. Ground reaction forces (GRF) were evaluated by a force platform, and surface electromyographic (sEMG) signals were evaluated in the vastus lateralis, biceps femoris, rectus femoris, tensor fasciae lata, adductor magnus, gluteus maximus, gluteus medius, and gastrocnemius lateralis muscles of the kicking leg. sEMG data were processed to obtain the cocontraction indices (CI) of antagonist vs. overall (agonist and antagonist) muscle activity. CI was measured for the hip and knee, in flexion and extension, and for hip abduction. Premotor, reaction (kinetic and kinematic), and kicking times were evaluated. Timing parameters, except kinetic reaction time, were faster in elite athletes. Furthermore, CI and angular velocity during knee extension, foot and knee linear velocity, and horizontal GRF were significantly higher in elite than in subelite athletes. In conclusion, selected biomechanical parameters of Bandal Chagui appear to be useful in controlling the training status of the kick and in orienting the training goal of black belt competitors.  相似文献   

11.
Executing any skill with efficiency is important for performance. In football kicking, conflicting and non-significant results have existed between reducing ankle plantarflexion during foot-ball contact with impact efficiency, making it unclear as to its importance as a coaching instruction. The aims of this study were to first validate a mechanical kicking machine with a non-rigid ankle, and secondly compare a rigid to a non-rigid ankle during the impact phase of football kicking. Measures of foot-ball contact for ten trials per ankle configuration were calculated from data recorded at 4000 Hz and compared. The non-rigid ankle was characterised by initial dorsiflexion followed by plantarflexion for the remainder of impact, and based on similarities to punt and instep kicking, was considered valid. Impact efficiency (foot-to-ball speed ratio) was greater for the rigid ankle (rigid = 1.16 ± 0.02; non-rigid = 1.10 ± 0.01; p < 0.001). The rigid ankle was characterised by significantly greater effective mass and significantly less energy losses. Increasing rigidity allowed a greater portion of mass from the shank to be used during the collision. As the ankle remained in plantarflexion at impact end, stored elastic energy was not converted to ball velocity and was considered lost. Increasing rigidity is beneficial for increasing impact efficiency, and therefore ball velocity.  相似文献   

12.
This study examined the factors affecting the ball velocity and rotation for side-foot soccer kick using a numerical investigation. Five experienced male university soccer players performed side-foot kicks with various attack angles and impact points using a one-step approach. The kicking motions were captured three-dimensionally by two high-speed cameras at 2500 fps. The theoretical equations of the ball velocity and rotation were derived based on impact dynamic theory. Using the theoretical equations, the relationships of the ball velocity and rotation to the attack angle and impact point were obtained. The validity of the theoretical equations was verified by comparing the theoretical relationships with measurement values. Furthermore, simulations of the ball velocity and rotation were conducted using the theoretical equations. The theoretical relationships were in good agreement with the measurement values. The theoretical results confirmed the previously reported experimental results, and indicated that the impact point is more influential on the ball velocity than the attack angle and the attack angle is more influential on the ball rotation than the impact point. The simulation results indicated the following. The ball velocity produced by impact for all impact patterns is largely affected by the foot velocity immediately before impact but barely affected by the degree of slip between the foot and the ball. The ball rotation produced by an impact with a large attack angle is affected by the foot velocity immediately before impact and the degree of slip between the foot and the ball; however, these factors affect the ball rotation less than the attack angle.  相似文献   

13.

Introduction

When taking a soccer penalty kick, there are two distinct kicking techniques that can be adopted; a ‘power’ penalty or a ‘placement’ penalty. The current study investigated how the type of penalty kick being taken affected the kicker’s visual search strategy and where the ball hit the goal (end ball location).

Method

Wearing a portable eye tracker, 12 university footballers executed 2 power and placement penalty kicks, indoors, both with and without the presence of a goalkeeper. Video cameras were used to determine initial ball velocity and end ball location.

Results

When taking the power penalty, the football was kicked significantly harder and more centrally in the goal compared to the placement penalty. During the power penalty, players fixated on the football for longer and more often at the goalkeeper (and by implication the middle of the goal), whereas in the placement penalty, fixated longer at the goal, specifically the edges. Findings remained consistent irrespective of goalkeeper presence.

Discussion/conclusion

Findings indicate differences in visual search strategy and end ball location as a function of type of penalty kick. When taking the placement penalty, players fixated and kicked the football to the edges of the goal in an attempt to direct the ball to an area that the goalkeeper would have difficulty reaching and saving. Fixating significantly longer on the football when taking the power compared to placement penalty indicates a greater importance of obtaining visual information from the football. This can be attributed to ensuring accurate foot-to-ball contact and subsequent generation of ball velocity. Aligning gaze and kicking the football centrally in the goal when executing the power compared to placement penalty may have been a strategy to reduce the risk of kicking wide of the goal altogether.  相似文献   

14.
Athletes in sports requiring explosive movements might benefit from a unique form of training in which a limb is restrained while the athlete attempts ballistic (explosive) movements. We investigated the effects of such ballistic training and conventional resistance training on force and speed of front kicks, side kicks, and palm strikes of martial artists. We assigned subjects randomly to an experimental group (n = 13) or a control (normal martial art training) group (n = 9). Conventional resistance training produced a gain of 12% (95% likely limits +/- 13%) in front kick force relative to the control group. Overall ballistic training and conventional resistance training decreased side kick force by 15% (+/-14%), but movement speeds increased by 11-21% (+/-13-17%). Responses to ballistic training were generally more marked in more highly skilled athletes. Attempted ballistic training may be a beneficial adjunct to resistance training for skilled athletes in sports where speed rather than force is critical.  相似文献   

15.
Wearable inertial measurement systems (IMS) allow for three-dimensional analysis of human movements in a sport-specific setting. This study examined the concurrent validity of a IMS (Xsens MVN system) for measuring lower extremity and pelvis kinematics in comparison to a Vicon motion analysis system (MAS) during kicking. Thirty footballers from Australian football (n = 10), soccer (n = 10), rugby league and rugby union (n = 10) clubs completed 20 kicks across four conditions. Concurrent validity was assessed using a linear mixed-modelling approach, which allowed the partition of between and within-subject variance from the device measurement error. Results were expressed in raw and standardised units for assessments of differences in means and measurement error, and interpreted via non-clinical magnitude-based inferences. Trivial to small differences were found in linear velocities (foot and pelvis), angular velocities (knee, shank and thigh), sagittal joint (knee and hip) and segment angle (shank and pelvis) means (mean difference: 0.2–5.8%) between the IMS and MAS in Australian football, soccer and the rugby codes. Trivial to small measurement errors (from 0.1 to 5.8%) were found between the IMS and MAS in all kinematic parameters. The IMS demonstrated acceptable levels of concurrent validity compared to a MAS when measuring kicking biomechanics across the four football codes. Wearable IMS offers various benefits over MAS, such as, out-of-laboratory testing, larger measurement range and quick data output, to help improve the ecological validity of biomechanical testing and the timing of feedback. The results advocate the use of IMS to quantify biomechanics of high-velocity movements in sport-specific settings.  相似文献   

16.
Thoracic injury potential of basic competition taekwondo kicks.   总被引:1,自引:0,他引:1  
A major concern in competition taekwondo is the injury potential posed by many of the powerful kicks used. An investigation of the kinetics of four kicks frequently used in competition was performed with high speed video. Velocities were measured, and energy was calculated. Typical values for basic swing kicks were 15 ms-1 and 200 J. Basic thrust kicks possessed 45% less velocity but 28% more energy than swing kicks. Linkage models were developed to simulate the motion and kinetics of the kicking leg. Injury potential was evaluated through thoracic compression and viscous criterion models. These models predict a significant probability of serious injury with all kicks, with thoracic deflections from 3 to 5 cm and peak viscous tolerance values from 0.9-1.4 ms-1, when no protective body equipment is used.  相似文献   

17.
Competition regulation in taekwondo has experienced several changes during the last few years, for example, kicks to the head score more points than kicks to the chest. In addition, some external factors such as the height of target and execution distance seem to affect the kick performance. The aim of this study was to analyse selected biomechanical parameters (impact force, reaction time, and execution time) according to the height and execution distance in two different male groups (experts (n = 12) and novices (n = 21)). Athletes kicked twice from every execution distance (short, normal and long) and towards two different heights of target (chest and head) in a random order. Novices kicked to the head with a longer reaction time than to the chest (p < 0.05) but experts were able to kick with similar performance for both heights. From short and normal distances experts kicked with similar performance; whereas from the normal distance novices had longer reaction and execution time than from the short distance (p < 0.05). In conclusion, in counterattacking situations, experts should perform the roundhouse kick to the head instead of to the chest, because it produces better scores with similar performance; whereas novice athletes should avoid kicking to the head because they are not able to kick with similar performance. Moreover, it is recommended that during counterattacks higher-level taekwondo athletes should intend to kick from normal distances.  相似文献   

18.
Swifts Apus apus are renowned for their fast flight manner which has fascinated people in all times. However, previous studies of swifts in flight during migration and roosting flights have shown that the birds operate over a narrow range of flight speeds compared with most other birds studied. In this study we have focused on the special flight behavior often called 'screaming parties'. During these flights the birds appear to reach very high speeds and therefore we used a stereo high speed camera setup to measure the flight speeds of the birds during this behavior with high accuracy. The birds were found to fly at much higher speeds during 'screaming parties' than during migration or roosting, on average twice as fast, 20.9  ms−1 (±5.1  ms−1) in horizontal speed. The highest record was 31.1  ms−1 which is the highest measured yet for a swift in self powered flight. Furthermore, the birds were performing steep climbing flights, on average 4.0  ms−1 (±2.8  ms−1) in vertical velocity. A clear trade-off between horizontal speed and vertical speed was found, suggesting that the birds are operating at their maximum.  相似文献   

19.
This study tested the accuracy of a novel, limited-availability web application (H2Q™) for predicting sweat rates in a variety of sports using estimates of energy expenditure and air temperature only. The application of predictions for group water planning was investigated for soccer match play. Fourteen open literature studies were identified where group sweat rates were reported (n = 20 group means comprising 230 individual observations from 179 athletes) with fidelity. Sports represented included: walking, cycling, swimming, and soccer match play. The accuracy of H2Q™ sweat rates was tested by comparing to measured group sweat rates using the concordance correlation coefficient (CCC) with 95% confidence interval [CI]. The relative absolute error (RAE) with 95% [CI] was also assessed, whereby the mean absolute error was expressed relative to an acceptance limit of 0.250 L/h. The CCC was 0.98 [0.95, 0.99] and the RAE was 0.449 [0.279, 0.620], indicating that the prediction error was on average 0.112 L/h. The RAE was < 1.0 for 19/20 observations (95%). Drink volumes modeled as a proxy for sweat losses during soccer match play prevented dehydration (< 1% loss of body mass). The H2Q™ web application demonstrated high group sweat prediction accuracy for the variety of sports activities tested. Water planning for soccer match play suggests the feasibility of easily and accurately predicting sweat rates to plan group water needs and promote optimal hydration in training and/or competition.  相似文献   

20.
A parametric investigation of the thoracic injury potential of basic taekwondo kicks was conducted through the use of computer simulations. Linkage-based models were employed to simulate the kinetics of the kicking leg and were used to drive a human thorax model. The results of the analysis according to the thoracic compression criterion indicated a minimal probability of severe injury (AIS4+) for swing kicks, nearly 0 percent and thrust kicks, less than three percent. The thoracic viscous criteria, on the other hand, predicted a severe injury probability of up to 100 percent for swing kicks and up to 80 percent for thrust kicks. Additional analysis showed that the injury potential was a strong function of the kick velocity and a weak function of the applied constant force. The injury potential was also found to be a weak function of the size and weight of the kicking leg, with variations in the peak compression and viscous response being typically below 5 percent for a 20 percent change in either the mass or the length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号