首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The ability of the central nervous system to control posture and balance has been used with increasing frequency for the diagnosis and/or treatment evaluation of various neuromuscular diseases. Typically this analysis (Posturographic Analysis) is based on tracking the motion of the center of mass (COM) during quiet standing, however direct measurement of the COM has been commonly approximated using the movement of the center of pressure (COP). The purpose of this study was to apply and validate a new method to track the COM (center of mass) and COP (center of pressure) from a visual hull measured using a markerless motion capture (MMC) method. The method was tested by comparing the calculation of the COP from direct measurements of the COP. The deviations between the methods, below 2 mm, were small relative to the average range of movement guaranteeing a satisfactory signal to noise ratio. This new method requires only kinematic data through MMC method and without the need of a force plate can identify the influence of individual body segments to motion of the COM.  相似文献   

2.
Examining whole-body center of mass (COM) motion is one of method being used to quantify dynamic balance and energy during gait. One common method for estimating the COM position is to apply an anthropometric model to a marker set and calculate the weighted sum from known segmental COM positions. Several anthropometric models are available to perform such a calculation. However, to date there has been no study of how the anthropometric model affects whole-body COM calculations during gait. This information is pertinent to researchers because the choice of anthropometric model may influence gait research findings and currently the trend is to consistently use a single model. In this study we analyzed a single stride of gait data from 103 young adult participants. We compared the whole-body COM motion calculated from 4 different anthropometric models (Plagenhoef et al., 1983; Winter, 1990; de Leva, 1996; Pavol et al., 2002). We found that anterior-posterior motion calculations are relatively unaffected by the anthropometric model. However, medial-lateral and vertical motions are significantly affected by the use of different anthropometric models. Our findings suggest that the researcher carefully choose an anthropometric model to fit their study populations when interested in medial-lateral or vertical motions of the COM. Our data can provide researchers a priori information on the model determination depending on the particular variable and how conservative they may want to be with COM comparisons between groups.  相似文献   

3.
For rigid body POSE estimation, any relative movement of the tracking markers on a segment is often referred to as an artefact; however this may be an important part of the signal within breast biomechanics. This study aimed to quantify differences in breast range of motion when calculated relative to the torso segment using either direct or segment optimised POSE estimation algorithms. Markers on the torso and right nipple were tracked using infrared cameras (200 Hz) during five running gait cycles in three breast support conditions (no bra, everyday bra and sports bra). Multiplanar breast range of motion was calculated relative to the torso segment using two POSE estimation algorithms. First, the torso segment was defined using direct POSE estimation (direct). Second, while standing stationary in the anatomical position; the positional data of the torso markers were used to construct the torso using segment optimised POSE estimation (optimised). The torso segment length defined using direct POSE estimation changed significantly by 3.4 cm compared to that of the segment optimisation POSE estimation in the no bra condition. Subsequently, superioinferior breast range of motion was significantly greater (p<0.017) when calculated using direct POSE estimation, within each of the three breast support conditions. Segment optimisation POSE estimation is recommended to minimise any differences in breast motion associated with intra segment deformation between physical activity types. However, either algorithm is recommended when evaluating different breast support garments, as a correctly fitted bra does not cause the torso markers to move relative to each other.  相似文献   

4.
PurposePhysical and hormonal changes during pregnancy are thought to affect balance and injury risk, with increased numbers of falls being reported. A maternity support belt (MSB) has been suggested to stabilize the pelvis and to enhance balance. The purpose of this study was therefore to investigate the effect of an MSB on postural stability in different trimesters of pregnancy.MethodsPostural stability was assessed in the first (T1, n = 30), second (T2, n = 30) and third trimester (T3, n = 30) of pregnancy and compared to non-pregnant controls (n = 30), using a portable force plate. Postural sway during quiescent standing with and without applying an MSB was characterized by analyzing path length, velocity, amplitudes and area. Subsequently, anterior and posterior limits of stability (LoS) were determined.ResultsPostural sway during quiescent standing did not change with pregnancy. However, LoS performance was reduced already in T1, before body mass significantly increased. The MSB led to a small improvement in the LoS while slightly increasing postural sway in anterior-posterior direction and shifting the center of pressure posteriorly during quiescent standing.ConclusionWhile impairments in balance already occurred early in pregnancy before body mass significantly increased, they were subtle and only measurable in exacerbated conditions. This challenges the assumed necessity of balance enhancing interventions in pregnant women. Although the MSB significantly affected body posture, the magnitude of the LoS improvement using the MSB was very small. Thus, it remains debatable if the MSB is a meaningful tool to increase balance during pregnancy.  相似文献   

5.
The balance control in the sagittal plane during standing without visual feedback has been studied in the context of the notion that a human body can be presented as a two-segment inverted pendulum. The oscillations of the center of pressure and of the upper and lower segments were recorded for 2 min (ten records for each of seven volunteers). It is shown that the correlation coefficients and dynamic similarity between the oscillation of the upper segment and the center of pressure are significantly higher than between the lower segment and the center of pressure. The dynamic similarity between the oscillations of the upper segment in different records are higher than between the oscillations of the lower one, which is supposedly connected with the necessity of stabilizing the head in space during standing. The oscillations of the lower segment occurred with a mean delay of 16.2 ± 9.0 ms relative to those of the upper segment. At the same time, the distribution of the delays has a peak at zero, indicating that two strategies of balance control are used during quiet standing, which are described in the one-segment and the two-segment inverted pendulum models.  相似文献   

6.
Segment estimates of mass, center of mass and moment of inertia are required input parameters to analyze the forces and moments acting across the joints. The objectives of this study were to propose a new geometric model for limb segments, to evaluate it against criterion values obtained from DXA, and to compare its performance to five other popular models. Twenty five female and 24 male college students participated in the study. For the criterion measures, the participants underwent a whole body DXA scan, and estimates for segment mass, center of mass location, and moment of inertia (frontal plane) were directly computed from the DXA mass units. For the new model, the volume was determined from two standing frontal and sagittal photographs. Each segment was modeled as a stack of slices, the sections of which were ellipses if they are not adjoining another segment and sectioned ellipses if they were adjoining another segment (e.g. upper arm and trunk). Length of axes of the ellipses was obtained from the photographs. In addition, a sex-specific, non-uniform density function was developed for each segment. A series of anthropometric measurements were also taken by directly following the definitions provided of the different body segment models tested, and the same parameters determined for each model. Comparison of models showed that estimates from the new model were consistently closer to the DXA criterion than those from the other models, with an error of less than 5% for mass and moment of inertia and less than about 6% for center of mass location.  相似文献   

7.
Research that evaluated both static and dynamic stability was performed, to clarify the impact of excessive body weight on postural control. The spontaneous center of foot pressure (CP) motion during quiet stance and a range of forward voluntary CP displacements were studied in 100 obese, and 33 lean women. Characteristics of postural sway were acquired while the subjects were standing quiet on a force plate with eyes open (EO) and with eyes closed (EC). Their anterior range of CP voluntary displacements was assessed upon a range of maximal whole body leanings which were directed forward. A substantial reduction of postural sway was observed in all patients which had increased body weight. Main postural sway parameters i.e., the total path length as well as its directional components were negatively correlated with the body mass and body mass index (BMI). The range of a whole body voluntary forward leaning, did not exhibit any significant change in patients with an obesity grade of I and II. Such a deficit was, however, found in subjects with a body mass index above 40. In conclusion, the increased body weight imposed new biomechanical constraints, that resulted in functional adaptation of the control of the erect posture. This functional adaptation was characterized by a reduced postural sway associated with a substantial reduction of the dynamic stability range in subjects with BMI>40.  相似文献   

8.
Accurate estimations of body segment inertial parameters (BSPs) are required to calculate the kinetics of motion. The purpose of this study was to develop a geometric model of the human thigh segment based on mass distribution properties determined from dual energy x ray absorptiometry (DEXA). One hundred subjects from four populations underwent a DEXA scan and anthropometric measurements were taken. The mass distribution properties of the thigh segment were determined for 20 subjects, a geometric model was developed, and the model was applied to the remaining 80 subjects. The model was validated by comparing to benchmark DEXA measurements. Four other popular models in the literature were also evaluated in the same manner No one set of predictors performed best for a particular group or BSP, however modeling the mass distribution properties of the segment allows the assumption of constant density while still accurately representing the inertial properties of the segment and provides promise for future development of BSP models.  相似文献   

9.
In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency. Received: 24 February 1997 / Accepted in revised form: 30 June 1998  相似文献   

10.
Based on a large-scale anthropometric measurements of 5290 individuals (2435 males and 2855 females) of the Bulgarian population aged between 30 and 40 years, we present 16-segmental 3D geometrical model of the human body of the average Bulgarian male and female and calculate mass, volume, location of the mass center and moments of inertia for all the segments for both genders. This study extends current anthropometrical data pool of Caucasian. Wherever possible, the comparison between our model results and data reported in literature for other Caucasian shows an overall good agreement, thus supporting the validity of the described method.  相似文献   

11.
The practical determination of accurate body segment inertial parameters for the general older adult population remains a problem, especially in estimating these parameters for women and accounting for variations in body type. A method is presented for determining the mass and center of mass location of the body segments of individuals within the general population of older adults. Effects of sex and body type on older adult mass distribution are accounted for using 32 easily obtainable body measurements. The method is based on existing results from different data sources and employs a combination of validated estimation approaches, including: body mass and segment length proportions, linear and nonlinear regression equations, and a mathematical model of the trunk. The method was applied to a validation sample of healthy, community-dwelling older adults (29 men, 50 women). Predicted body mass was 96.7+/-4.8% and 95.7+/-3.7% of measured body mass in the men and women, respectively. The estimates of body segment mass and trunk center of mass location for the sample population approximate those reported in the literature, supporting the validity of the described method. By producing practical, subject-specific estimates of body segment inertial parameters, the method should allow more accurate biomechanical analyses of the older adult population.  相似文献   

12.
A technique for studying the relationship of posture to balance has been developed. To investigate this relationship quantitatively, the human body was treated as consisting of 11 rigid body segments, each with six degrees of freedom. A bilateral Selspot II/TRACK data acquisition system provides position and orientation kinematic data for estimation of the trajectories of the individual body segment centers of gravity. From these, the whole body center of gravity is estimated and compared to concurrent force plate center of force data. Center of gravity and center of force excursions agree where dynamics are not significant. The technique may be employed to study quiet stance, response to postural disturbances, or the initiation and coordination of complex movements such as gait.  相似文献   

13.
Electronic performance and tracking systems (EPTS) traditionally rely on one of two body positions as the ultimate representative for the entire body in space: the upper torso between the scapulae (GPS- and radar-based systems) or the body’s estimated center (optical and some radar-based systems). The aim of this study was to quantify the impact of the respective reference point upon the resulting kinematic tracking variables. We present a marker-based method comparing center of pelvis (COP) derived tracking variables with center of scapulae (COS) derived tracking variables in a 30 × 30 m (900 m2) VICON measurement area. Fourteen male soccer players completed a running circuit with prescribed team-sport specific movements. Results showed that differences between COP and COS heavily depend on the underlying movement characteristic. Low-speed running showed the lowest deviations whereas accelerated movements and movements with sharp changes in direction lead to a significant increase in the observed differences. Results further showed that COS sprinting distance was on average −44.65% (p < 0.001) lower in comparison to COP. Similarly, maximum speed obtained from COS was −2.94% (p = 0.001) lower in comparison to COP. On the contrary, maximum acceleration values of COS were on average 16.15% (p = 0.02) higher compared to COP. Our work illustrates that the anatomical reference point used to represent the entire body in space needs to be carefully considered in the interpretation of tracking variables delivered by different EPTS.  相似文献   

14.
Gait patterns of the elderly are often adjusted to accommodate for reduced function in the balance control system and a general reduction in skeletal muscle strength. Recent studies have demonstrated that measures related to motion of whole body center of mass (COM) can distinguish elderly individuals with balance impairment from healthy peers. Accurate COM estimation requires a multiple-segment anthropometric model, which may restrict its broad application in assessment of dynamic instability. Although temporal-distance measures and electromyography have been used in evaluation of overall gait function and determination of gait dysfunction, no studies have examined the use of gait measurements in predicting COM motion during gait. The purpose of this study was to demonstrate the effectiveness of an artificial neural network (ANN) model in mapping gait measurements onto COM motion in the frontal plane. Data from 40 subjects of varied age and balance impairment were entered into a 3-layer feed-forward model with back-propagated error correction. Bootstrap re-sampling was used to enhance the generalization accuracy of the model, using 20 re-sampling trials. The ANN model required minimal processing time (5 epochs, with 20 hidden units) and accurately mapped COM motion (R-values up to 0.89). As training proportion and number of hidden units increased, so did model accuracy. Overall, this model appears to be effective as a mapping tool for estimating balance control during locomotion. With easily obtained gait measures as input and a simple, computationally efficient architecture, the model may prove useful in clinical scenarios where electromyography equipment exists.  相似文献   

15.
A mathematical inertia model which permits the determination of personalized segmental inertia parameter values from anthropometric measurements is described. The human body is modelled using 40 geometric solids which are specified by 95 anthropometric measurements. A 'stadium' solid is introduced for modelling the torso segments using perimeter and width measurements. This procedure is more accurate than the use of elliptical discs of given width and depth and permits a smaller number of such solids to be used. Inertia parameter values may be obtained for body models of up to 20 segments. Errors in total body mass estimates from this and other models are discussed with reference to the unknown lung volumes.  相似文献   

16.
BackgroundA standard phenotype of frailty was independently associated with an increased risk of adverse outcomes including comorbidity, disability and with increased risks of subsequent falls and fractures. Postural control deficit measurement during quiet standing has been often used to assess balance and fall risk in elderly frail population. Real time human motion tracking is an accurate, inexpensive and portable system to obtain kinematic and kinetic measurements. The aim of this study was to examine orientation and acceleration signals from a tri-axial inertial magnetic sensor during quiet standing balance tests using the wavelet transform in a frail, a prefail and a healthy population.MethodsFourteen subjects from a frail population (79±4 years), eighteen subjects from a prefrail population (80±3 years) and twenty four subjects from a healthy population (40±3 years) volunteered to participate in this study. All signals were analyzed using time–frequency information based on wavelet decomposition and principal component analysis.FindingsThe absolute sum of the coefficients of the wavelet details corresponding to the high frequencies component of orientation and acceleration signals were associated with frail syndrome.InterpretationThese parameters could be of great interest in clinical settings and improved rehabilitation therapies and in methods for identifying elderly population with frail syndrome.  相似文献   

17.
Body segment parameters such as segment mass, center of mass, and radius of gyration are used as inputs in static and dynamic ergonomic and biomechanical models used to predict joint and muscle forces, and to assess risks of musculoskeletal injury. Previous work has predicted body segment parameters (BSPs) in the general population using age and obesity levels as statistical predictors (Merrill et al., 2017). Estimated errors in the prediction of BSPs can be as large as 40%, depending on age, and the prediction method employed (Durkin and Dowling, 2003). Thus, more accurate and representative segment parameter inputs are required for attempting to predict modeling outputs such as joint contact forces, muscle forces, and injury risk in individuals. This study aims to provide statistical models for predicting torso, thigh, shank, upper arm, and forearm segment parameters in working adults using whole body dual energy x-ray absorptiometry (DXA) scan data along with a set of anthropometric measurements. The statistical models were developed on a training data set, and independently validated on a separate test data set. The predicted BSPs in validation data were, on average, within 5% of the actual in vivo DXA-based BSPs, while previously developed predictions (de Leva, 1996) had average errors of up to 60%, indicating that the new models greatly increase the accuracy in predicting segment parameters. These final developed models can be used for calculating representative BSPs in individuals for use in modeling applications dependent on these parameters.  相似文献   

18.
Postural stability is crucial in maintaining body balance during quiet standing, locomotion, and any activities that require a high degree of balance performance, such as participating in sports and dancing. Research has shown that there is a relationship between stability and body mass. The aims of this study were to examine the impact that two variables had on static postural control: body mass index (BMI) and gender. Eighty healthy young adults (age=21.7±1.8 yr; height=1.65±0.09 m; mass=67.5±19.0 kg) participated in the study and the static postural control was assessed using the Biodex Balance System, with a 20 Hz sampling rate in the bipedic stance (BLS) and unipedic stance (ULS) for 30s. Five test evaluations were performed for each balance test. Postural control was found to be negatively correlated with increased adiposity, as the obese BMI group performed significantly poorer than the underweight, normal weight and overweight groups during BLS and ULS tests. The underweight, normal weight and overweight groups exhibited greater anterior-posterior stability in postural control during quiet stance. In addition, female displayed a trend of having a greater postural sway than male young adults, although it was evidenced in only some BMI groups. This study revealed that BMI do have an impact on postural control during both BLS and ULS. As such, BMI and gender-specific effects should be taken into consideration when selecting individuals for different types of sporting activities, especially those that require quiet standing.  相似文献   

19.
Balance is a complex, sensorimotor task requiring an individual to maintain the center of gravity within the base of support. Quantifying balance in a reliable and valid manner is essential to evaluating disease progression, aging complications, and injuries in clinical and research settings. Typically, researchers use force plates to track motion of the center of gravity during a variety of tasks. However, limiting factors such as cost, portability, and availability have hindered postural stability evaluation in these settings. This study compared the “gold standard” for assessing postural stability (i.e., the laboratory-grade force plate) to a more affordable and portable assessment tool (i.e., BTrackS balance plate) in healthy young adults. Correlations and Bland-Altman plots between the center of pressure outcome measures derived from these two instruments were produced. Based on the results of this study, the measures attained from the portable balance plate objectively quantified postural stability with high validity on both rigid and compliant surfaces, demonstrated by thirty-five out of thirty-eight observed postural stability metrics in both surface conditions with a correlation of 0.98 or greater. The low cost, portable system performed similarly to the lab-grade force plate indicating the potential for practitioners and researchers to use the BTrackS balance plate as an alternative to the more expensive force plate option for assessing postural stability, whether in the lab setting or in the field.  相似文献   

20.
Evaluation of postural control is generally based on the interpretation of the center of pressure (COP) and the center of mass (COM) time series. The purpose of this study is to compare three methods to estimate the COM which are based on different biomechanical considerations. These methods are: (1) the kinematic method; (2) the zero-point-to-zero-point double integration technique (GLP) and (3) the COP low-pass filter method (LPF). The COP and COM time series have been determined using an experimental setup with a force plate and a 3D kinematic system on six healthy young adult subjects during four different 30 s standing tasks: (a) quiet standing; (b) one leg standing; (c) voluntary oscillation about the ankles and (d) voluntary oscillation about the ankles and hips. To test the difference between the COM trajectories, the root mean square (RMS) differences between each method (three comparisons) were calculated. The RMS differences between kinematic-LPF and GLP-LPF are significantly larger than kinematic-GLP. Our results show that the GLP method is comparable to the kinematic method. Both agree with the unified theory of balance during upright stance. The GLP method is attractive in the clinical perspective because it requires only a force plate to determine the COP-COM variable, which has been demonstrated to have a high reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号