首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
丛枝菌根真菌和磷水平对番茄幼苗侧根形成的影响   总被引:2,自引:0,他引:2  
为了探讨丛枝菌根真菌(AMF)和磷水平对植物根系构型的影响,在两个磷水平下对番茄幼苗接种AMF菌株Rhizophagus irregularis BGC JX04B,研究AMF和磷水平对番茄幼苗侧根形成的影响.结果表明: AMF对植株生物量的促进效应不明显,但显著降低了植株的根冠比;显著增加了主根长而减少了1级侧根长,并与侵染时期存在互作;显著降低了2~3级侧根数量及2级侧根数与1级侧根数的比值,对1~2级侧根密度无显著影响.高磷(50 mg·kg-1P)显著促进了植株生长,降低了植株的根冠比;对主根长和1级侧根长无显著影响,显著增加了1~3级侧根数量及2级侧根数与1级侧根数的比值,提高了1~2级侧根密度.表明AMF和磷水平对番茄侧根形成的影响机制不同,高磷的影响可能基于对养分吸收和生长的促进效应,而AMF的影响则更为复杂,且AMF与侵染时期的互作效应预示着碳素分配(糖信号)可能参与了AMF对根系构型的调控.  相似文献   

2.
缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响   总被引:1,自引:0,他引:1  
用液培方法研究了缺磷胁迫对小麦(TriticumaestivumL.)根系生长的影响。结果表明,随着介质磷水平的提高,小麦根轴长度和植株生长素浓度均降低。在低磷条件下用生长素极性运输抑制剂三碘苯甲酸(TIBA)处理后,小麦的根轴长度明显降低,表明生长素参与了缺磷小麦根轴生长的调控。缺磷小麦根部生长素浓度的提高诱导了细胞周期蛋白基因cyclAt的表达,促进了根分生组织细胞的分裂并驱动了根的生长。  相似文献   

3.
该研究以水稻品种‘宁粳6号’为材料,通过外源使用黄腐酸(FA)与生长素抑制剂共同处理水稻,探究FA对水稻根系生长的影响及其与生长素之间的关系。结果表明:(1)50~800 mg·L^(-1) FA处理水稻幼苗6 d后,当FA浓度超过100 mg·L^(-1)时显著促进水稻种子根的伸长生长;FA浓度超过400 mg·L^(-1)时,与对照组相比水稻的平均侧根长和侧根密度显著增加。(2)与对照相比,低浓度FA处理对水稻幼苗根尖生长素的含量无显著影响,但400 mg·L^(-1) FA处理后显著提高了内源生长素的含量。(3)3μmol·L^(-1)生长素合成抑制剂4-联苯硼酸(BBo)、4-苯氧基苯基硼酸(PPBo)或30μmol·L^(-1)生长素信号转导抑制剂2-(对-氯苯氧)-异丁酸(PCIB)处理均可显著抑制水稻根和侧根的发生;1μmol·L^(-1)生长素极性运输抑制剂三碘苯甲酸(TIBA)可显著抑制水稻种子根的伸长生长与侧根发生,但对侧根长度无显著作用。(4)FA与BBo或PPBo共同处理可显著抑制FA对水稻根系伸长生长与侧根发生的促进作用;TIBA和PCIB分别和FA共同处理水稻,可显著抑制FA对种子根伸长生长的促进作用,且PCIB可显著抑制FA对侧根发生的促进作用,但TIBA对此没有显著影响。研究发现,外源FA可能通过调控植物内源生长素的合成、极性运输或信号转导来调控水稻根的伸长生长和侧根的发育。  相似文献   

4.
生长素极性运输(PAT)在植物生长发育尤其是极性发育和模式建成中起重要作用.采用2种PAT抑制剂TIBA(2,3,5-triiodobenzoic acid)和HFCA(9-hydroxyfluorene-9-carboxylic acid)处理水稻(Oryza sativa L. cv.Zhonghua)幼苗,结果表明:PAT影响水稻根发育包括主根的伸长、侧根的起始和伸长以及不定根的发育.PAT的抑制导致主根变短、侧根和不定根数目减少.外源附加生长素(NAA)可以部分恢复不定根的形成但不能恢复侧根的形成,表明在侧根和不定根的形成上可能具有不同的机制.切片结果表明,30μmol/TIBA处理后并不完全抑制侧根原基的形成,进一步研究表明生长素由胚芽鞘向基部的运输在水稻不定根的起始和伸长中起关键作用.  相似文献   

5.
生长素极性运输在水稻根发育中的作用   总被引:4,自引:0,他引:4  
生长素极性运输(PAT)在植物生长发育尤其是极性发育和模式建成中起重要作用。采用2种PAT抑制剂TIBA(2,3,5-triiodobenzoic acid)和HFCA(9-hydroxyfluorene-9-carboxylic acid)处理水稻(Oryza sativa 1.cv.Zhonghua)幼苗,结果表明:PAT影响水稻根发育包括主根的伸长、侧根的起始和伸长以及不定根的发育。PAT的抑制导致主根变短、侧根和不定根数目减少。外源附加生长素(NAA)可以部分恢复不定根的形成但不能恢复侧根的形成,表明在侧根和不定根的形成上可能具有不同的机制。切片结果表明,30μmol/L TIBA处理后并不完全抑制侧根原基的形成,进一步研究表明生长素由胚芽鞘向基部的运输在水稻不定根的起始和伸长中起关键作用。  相似文献   

6.
生长素是调控植物侧根发育的关键植物激素,生长素运输载体PIN蛋白介导其极性分布。ABI4抑制生长素极性运输蛋白基因PIN1的表达,影响生长素的极性运输,抑制侧根形成。本文概述ABI4转录因子调控侧根发育的研究进展。  相似文献   

7.
缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响   总被引:5,自引:0,他引:5  
用液培方法研究了缺磷胁迫对小麦(Triticum aestivum L.)根系生长的影响。结果表明,随着介质磷水平的提高,小麦根轴长度和植株生长素深度均降低。在低磷条件下用生长素极性运输抑制剂三碘苯甲酸(TIBA)处理后,小麦的根轴长度明显降低,表明生长素参与了缺磷小麦根轴生长的调控。缺磷小麦根部生长素浓度的提高诱导了细胞周期蛋白基因cyc1At的素达,促进了根分生组织细胞的分裂并驱动了根的生长。  相似文献   

8.
《菌物学报》2017,(7):950-962
以番茄Solanum lycopersicum为寄主植物,在pH 3.7、pH 4.5、pH 5.5和pH 6.5条件下接种根内根孢囊霉Rhizophagus intraradices,分别在培养4周和7周取样测定低pH对丛枝菌根真菌(AMF)丛枝发育和磷吸收利用的影响。结果表明,当pH低于5.5时,低pH显著抑制AMF对根系的侵染和丛枝的形成,且抑制效应随pH的降低而增强;与侵染率相比,丛枝丰度随土壤pH的降低而降低的幅度更大;低pH显著降低了植株生物量;与不接种处理相比,接种AMF显著提高植株生物量;相关分析表明,在菌根侵染指标中丛枝丰度与植株生长相关性最高;方差分解分析表明,pH对植株生物量的贡献率(88%和77%,两次取样)大于AMF的贡献率(5%和8%,两次取样);低pH对碱性磷酸酶活性的影响与根系侵染有相似的趋势;AMF能显著提高地上部P浓度,而低pH显著降低地上部P浓度以及根系中LePT3、LePT4和LePT5的表达。这些结果表明,低pH对AMF与植物的共生关系有显著的抑制作用,其中对丛枝的形成与功能的抑制效应最大。  相似文献   

9.
缺磷胁迫下的小麦根系形态特征研究   总被引:52,自引:10,他引:42  
研究了缺磷条件下不同基因型小麦(Triticum aestivum L.)苗期根系形态学适应特征,以明确环境因子对根系不同组分(根轴和侧根)生长发育调控作用的强度和根系形态与磷营养效率关系。在缺P环境中,小麦根轴数量和侧根长度明显减小,同化物向根部的分配比例增加,根轴长度、侧根数量和根系长度等均有显著提高。供试基因型小麦的根轴数量及其长度的差异在每个供磷水平及不同供磷水平之间均呈显著,说明这两种性状的差异是由基因型和环境因素共同决定的;而侧根特征的差异只在不同供磷水平间显著,表明侧根性状主要受环境因素的控制。对6种基因型小麦的研究表明,根轴数量、根轴长度、根生长角度和根系长度根角之间存在着显著的基因型差异。相关分析表明,小麦的相对产量与缺磷条件下的小麦苗期根系形态指标的交互作用之间具有显著的线性关系。这种关系说明根系形态性状可作为早期有效地筛选磷高效小麦品种的指标。  相似文献   

10.
低磷胁迫对水稻苗期侧根生长及养分吸收的影响   总被引:50,自引:0,他引:50  
用蛭石与石英砂作为混合培养介质研究了低磷胁迫对水稻(Oryza sativa L.)苗期侧根发生发育的影响及其与磷吸收的相关关系。结果表明:低磷对水稻的侧根发生发育具有明显的诱导作用及基因型差异。相关性分析表明:单位侧根长度的增加与单位根表面积的增大极显相关,而单位侧根数量的增多与单位根表面积的增大无显的相关性。表明单位根表面积的增加主要来自于单位侧根的伸长。侧根参数与磷含量的相关性分析表明:低磷条件下,侧根总长度和侧根数量都与植株磷含量存在显的正相关,根系总表面积与磷含量存在极显的正相关。表明在低磷条件下,侧根的发生发育对水稻的磷吸收具有重要的作用。根系和地上部的可溶性糖含量分析表明;低磷胁迫改变了同化物在地上部和根系的分配。生物量测定表明:低磷胁迫显增大了植株的根冠比。  相似文献   

11.
Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production.  相似文献   

12.
Comparative effects of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on lateral root (LR) formation were studied using 2-day-old seedlings of IR8 rice (Oryza sativa L.). Results showed that IBA at all concentrations (0.8–500 nmol/L) increased the number of LRs in the seminal root. However exogenous IAA, failed to increase the number of LRs. On the other hand, both IBA and IAA caused inhibition of seminal root elongation and promotion of LR elongation, but IAA can only reach to the same degree of that of IBA at a more than 20-fold concentration. Exogenous IBA had no effect on endogenous IAA content. We conclude from the results that IBA could act directly as a distinct auxin, promoting LR formation in rice, and that the signal transduction pathway for IBA is at least partially different from that for IAA.  相似文献   

13.
Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation.  相似文献   

14.
Common mycorrhizal network (CMN) allows nutrients and signals to pass between two or more plants. In this study, trifoliate orange (Poncirus trifoliata) and white clover (Trifolium repens) were planted in a two-compartmented rootbox, separated by a 37–μm nylon mesh and then inoculated with an arbuscular mycorrhizal fungus (AMF), Diversispora spurca. Inoculation with D. spurca resulted in formation of a CMN between trifoliate orange and white clover, whilst the best AM colonization occurred in the donor trifoliate orange–receptor white clover association. In the trifoliate orange–white clover association, the mycorrhizal colonization of receptor plant by extraradical hyphae originated from the donor plant significantly increased shoot and root fresh weight and chlorophyll concentration of the receptor plant. Enzymatic activity of soil β-glucoside hydrolase, protease, acid and neutral phosphatase, water-stable aggregate percentage at 2–4 and 0.5–1 mm size, and mean weight diameter in the rhizosphere of the receptor plant also increased. The hyphae of CMN released more easily-extractable glomalin-related soil protein and total glomalin-related soil protein into the receptor rhizosphere, which represented a significantly positive correlation with aggregate stability. AMF inoculation exhibited diverse changes in leaf and root sucrose concentration in the donor plant, and AM colonization by CMN conferred a significant increase of root glucose in the receptor plant. These results suggested that CMN formed in the trifoliate orange–white clover association, and root AM colonization by CMN promoted plant growth, root glucose accumulation, and rhizospheric soil properties in the receptor plant.  相似文献   

15.
Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.  相似文献   

16.
The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.  相似文献   

17.
Aims Studies have showed that arbuscular mycorrhizal fungi (AMF) can greatly promote the growth of host plants, but how AMF affect flowering phenology of host plants is not well known. Here, we conducted a pot experiment to test whether life cycle and flowering phenology traits of host plant Medicago truncatula Gaertn can be altered by AMF under low and high soil phosphorus (P) levels.Methods The experiment was conducted in a greenhouse at Zhejiang University in China (120°19′E, 30°26′N) and had a completely randomized design with two factors: AMF treatments and soil P levels. Six AMF species (Acaulospora scrobiculata, As; Gigaspora margarita, Gma; Funneliformis geosporum, Fg; Rhizophagus intraradices, Ri; Funneliformis mosseae, Fmo and Glomus tortuosum, Gt.) were used, and two soil P levels (24.0 and 5.7 mg kg-1 Olsen-soluble P) were designed. The six AMF species were separately inoculated or in a mixture (Mix), and a non-AMF control (NAMF) was included. When plants began to flower, the number of flowers in each pot was recorded daily. During fruit ripening, the number of mature fruits was also recorded daily. After ~4 months, the biomass, biomass P content and AMF colonization of host plant were measured. Correlation between root colonization and first flowering time, or P content and first flowering time was analyzed.Important findings Under the low P level, first flowering time negatively correlated with root colonization and biomass P. Only host plants with AMF species As, Fg, Ri, or Mix were able to complete their life cycle within 112 days after sowing. And treatment with AMF species Fg, Gt, or As resulted in two periods of rapid flower production while other fungi treatments resulted in only one within 112 days after sowing. The cumulative number of flowers produced and biomass P content were highest with species Fg. Host biomass allocation significantly differed depending on the species of AMF. Under both soil P levels, the host plant tended to allocate more biomass to fruits in the Mix treatment than in the other treatments. These results indicated that the effects of AMF on host flowering phenology and biomass allocation differed depending on AMF species and soil P levels.  相似文献   

18.
A plastic root system is a prerequisite for successful plant acclimation to variable environments. The normally functioning root system is the result of a complex interaction of root-borne signals and shoot-derived regulators. We recently demonstrated that AUX1, a well-studied component of auxin transport, mediates shoot-supplied ammonium (SSA) inhibition of lateral root (LR) formation in Arabidopsis. By contrast, the response did not involve ABA pathways, via which several other abiotic stresses affect LR formation. We proposed that SSA regulates LR emergence by interrupting AUX1-mediated auxin transport from shoot to root. Here, by analyzing both ABA- and auxin-related mutants, we show that AUX1 is also required for SSA-mediated suppression of primary root growth. Ammonium content in shoots was furthermore shown to increase linearly with shoot-, but not root-supplied, ammonium, suggesting it may represent the internal trigger for SSA inhibition of root development. Taken together, our data identify AUX1-mediated auxin transport as a key transmission step in the sensing of excessive ammonium exposure and its inhibitory effect on root development.Key words: ammonium, root, auxin, AUX1, ABA, shoot-derived signal  相似文献   

19.
Drought is a major abiotic factor limiting plant growth and crop production. There is limited information on effect of interaction between biochar and Arbuscular mycorrhizal fungi (AMF) on okra growth, root morphological traits and soil enzyme activities under drought stress. We studied the influence of biochar and AMF on the growth of Okra (Abelmoschus esculentus) in pot experiments in a net house under drought condition. The results showed that the biochar treatment significantly increased plant growth (the plant height by 14.2%, root dry weight by 30.0%) and root morphological traits (projected area by 22.3% and root diameter by 22.7%) under drought stress. In drought stress, biochar treatment significantly enhanced the chlorophyll ‘a’ content by 32.7%, the AMF spore number by 22.8% and the microbial biomass as compared to the control. Plant growth parameters such as plant height, shoot and root dry weights significantly increased by AMF alone, by 16.6%, 21.0% and 40.0% respectively under drought condition. Other plant biometrics viz: the total root length, the root volume, the projected area and root diameter improved significantly with the application of AMF alone by 38.3%, 60.0%,16.8% and 15.9% respectively as compared with control. Compared to the control, AMF treatment alone significantly enhanced the total chlorophyll content by 36.6%, the AMF spore number by 39.0% and the microbial biomass by 29.0% under drought condition. However, the highest values of plant growth parameters (plant height, shoot dry weight, root dry weight) and root morphological traits (the total root length, root volume, projected area, root surface area) were observed in the combined treatment of biochar and AMF treatment viz: 31.9%, 34.2%, 60.0% and 68.6%, 66.6%, 45.5%, 41.8%, respectively compared to the control under drought stress. The nitrogen content, total chlorophyll content and microbial biomass increased over un-inoculated control. The soil enzymes; alkaline phosphatase, dehydrogenase and fluorescein diacetate enzyme activities significantly increased in the combined treatment by 55.8%, 68.7% and 69.5%, respectively as compared to the control under drought stress. We conclude that biochar and AMF together is potentially beneficial for cultivation of okra in drought stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号