首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of surface NKG2D ligands on tumour cells, which activates nature killer (NK) cells and CD8+ T cells, is crucial in antitumour immunity. Some types of tumours have evolved mechanisms to suppress NKG2D‐mediated immune cell activation, such as tumour‐derived soluble NKG2D ligands or sustained NKG2D ligands produced by tumours down‐regulate the expression of NKG2D on NK cells and CD8+ T cells. Here, we report that surface NKG2D ligand RAE1ε on tumour cells induces CD11b+Gr‐1+ myeloid‐derived suppressor cell (MDSC) via NKG2D in vitro and in vivo. MDSCs induced by RAE1ε display a robust induction of IL‐10 and arginase, and these MDSCs show greater suppressive activity by inhibiting antigen‐non‐specific CD8+ T‐cell proliferation. Consistently, upon adoptive transfer, MDSCs induced by RAE1ε significantly promote CT26 tumour growth in IL‐10‐ and arginase‐dependent manners. RAE1ε moves cytokine balance towards Th2 but not Th1 in vivo. Furthermore, RAE1ε enhances inhibitory function of CT26‐derived MDSCs and promotes IL‐4 rather than IFN‐γ production from CT26‐derived MDSCs through NKG2D in vitro. Our study has demonstrated a novel mechanism for NKG2D ligand+ tumour cells escaping from immunosurveillance by facilitating the proliferation and the inhibitory function of MDSCs.  相似文献   

2.
Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.  相似文献   

3.
4.
Natural killer (NK) cells have been reported to play a pathological role in autoimmune uveitis. However, the mechanisms regarding NK cells in uveitis and factors that affect NK‐cell activation in this condition remain unclear. Here, we report that the number of CD3NK1.1+CD83+CCR7+ cells is increased in the inflamed eyes within a mouse model of experimental autoimmune uveitis (EAU), and these cells express elevated levels of NKG2D, CD69 and IFN‐γ. Adoptively transferring CD83+CCR7+NK cells aggravates EAU symptoms and increases the number of CD4+IFN‐γ+T cells and dendritic cells (DCs) within the eye. These CD83+CCR7+NK cells then promote the maturation of DCs and IFN‐γ expression within T cells as demonstrated in vitro. Furthermore, IL‐18, as primarily secreted by DCs in the eyes, is detected to induce CD83+CCR7+NK cells. In EAU mice, anti‐IL‐18R antibody treatment also decreases retinal tissue damage, as well as the number of infiltrating CD83+CCR7+NK cells, T cells and DCs in the inflamed eyes and spleens of EAU mice. These results suggest that CD83+CCR7+NK cells, as induced by IL‐18 that primarily secreted by DCs, play a critical pathological role in EAU. Anti‐IL‐18R antibody might serve as a potential therapeutic agent for uveitis through its capacity to inhibit CD83+CCR7+NK cells infiltration.  相似文献   

5.
This study compared the effects of the human 70-kDa stress protein (Hsp70) peptide, TKDNNLLGRFELSG (TKD), proinflammatory cytokines, or a combination of both on the repertoire of receptors expressed by human natural killer (NK) cells and their capacity to kill human CX colon carcinoma cells, K562 erythroleukemic cells, and leukemic blasts from two patients with acute myelogenous leukemia. Low-dose interleukin (IL) 2/IL-15 and TKD increase the expression density of activatory (NKG2D, NKp30, NKp44, NKp46, CD94/NKG2C) and inhibitory (CD94/NKG2A) receptors on NK cells. Concomitantly, IL-2/TKD treatment enhances the cytotoxicity of NK cells (as reflected by their secretion of granzyme B) against Hsp70 membrane-positive and human leukocyte antigen (HLA)-E membrane-negative (Hsp70+/HLA-E) CX+ and K562 cells. However, it had no effect on the responsiveness to Hsp70/HLA-E CX cells over that induced by IL-2 alone. The cytotoxicity of IL-2/TKD-activated, purified NK cells and peripheral blood mononuclear cells against Hsp70+/HLA-E+ leukemic blasts was weaker than that against Hsp70+/HLA-E K562 cells. Hsp70-blocking and HLA-E transfection experiments confirmed membrane-bound Hsp70 as being a recognition/activatory ligand for NK cells, as cytotoxicity was reduced by the presence of the anti-Hsp70 monoclonal antibody cmHsp70.2 and by inhibiting Hsp70 synthesis using short interference ribonucleic acid. HLA-E was confirmed as an inhibitory ligand, as the extent of NK cell-mediated lysis of K562 cell populations that had been transfected with HLA-ER or HLA-EG alleles was dependent on the proportion of HLA-E-expressing cells. These findings indicate that Hsp70 (as an activatory molecule) and HLA-E (as an inhibitory ligand) expression influence the susceptibility of leukemic cells to the cytolytic activities of cytokine/TKD-activated NK cells.  相似文献   

6.
BackgroundPMM2-CDG is the most common N-glycosylation defect and shows an increased risk of recurrent and/or severe, sometimes fatal, infections in early life. We hypothesized that natural killer (NK) cells, as important mediators of the immune response against microbial pathogens and regulators of adaptive immunity, might be affected in this genetic disorder.ObjectiveTo evaluate possible defects on PMM2-CDG NK peripheral blood cell number, killing activity and expression of membrane receptors.MethodsWe studied fresh and activated NK cells from twelve PMM2-CDG cells. The number and expression of lymphoid surface receptors were studied by flow cytometry. The NK responsiveness (frequency of degranulated NK cells) and killing activity against K562 target cells was determined in the NK cytotoxicity assay.ResultsWe found an increase of blood NK cells in three patients with a severe phenotype. Two of them, who had suffered from moderate/severe viral infections during their first year of life, also had reduced T lymphocyte numbers. Patient activated NK cells showed increased expression of CD54 adhesion molecule and NKG2D and NKp46 activating receptors. NKp46 and 2B4 expression was inversely correlated with the expression of NKG2D in activated PMM2-CDG cells. Maximal NK activity against K562 target cells was similar in control and PMM2-CDG cells. Interestingly, the NK cell responsiveness was higher in patient cells. NKG2D and specially CD54 increased surface expression significantly correlated with the increased NK cell cytolytic activity according to the modulation of the killer activity by expression of triggering receptors and adhesion molecules.ConclusionsOur results indicate that hypoglycosylation in PMM2-CDG altered NK cell reactivity against target cells and the expression of CD54 and NKG2D, NKp46 and 2B4 activating receptors during NK cell activation. This suggests a defective control of NK cell killing activity and the overall anti-viral immune response in PMM2-CDG patients. The present work improves our understanding of the immunological functions in PMM2-CDG and possibly in other CDG-I types.  相似文献   

7.
Influenza vaccines elicit antigen-specific antibodies and immune memory to protect humans from infection with drift variants. However, what supports or limits vaccine efficacy and duration is unclear. Here, we vaccinated healthy volunteers with annual vaccine formulations and investigated the dynamics of T cell, natural killer (NK) cell and antibody responses upon restimulation with heterologous or homologous influenza virus strains. Influenza vaccines induced potential memory NK cells with increased antigen-specific recall IFN-γ responses during the first 6 months. In the absence of significant changes in other NK cell markers (CD45RO, NKp44, CXCR6, CD57, NKG2C, CCR7, CD62L and CD27), influenza vaccines induced memory NK cells with the distinct feature of intracellular NKp46 expression. Indeed, surface NKp46 was internalized, and the dynamic increase in NKp46(intracellular)+CD56dim NK cells positively correlated with increased IFN-γ production to influenza virus restimulation after vaccination. In addition, anti-NKp46 antibodies blocked IFN-γ responses. These findings provide insights into a novel mechanism underlying vaccine-induced immunity and NK-related diseases, which may help to design persisting and universal vaccines in the future.  相似文献   

8.
Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC) progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK) and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC) showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.  相似文献   

9.
We have previously reported a synergistic effect between hydrocortisone (HC) and IL-15 on promoting natural killer (NK) cell expansion and function. In the present study, we extend our findings to methylprednisolone (MeP) and dexamethasone (Dex), thus ascribing to glucocorticoids (GCs) a general feature as positive regulators of IL-15-mediated effects on NK cells. We demonstrate that each GC when combined with IL-15 in cultures of peripheral blood (PB)-derived CD56+ cells induces increased expansion of CD56+CD3 cells displaying high cytolytic activity, IFN-γ production potential and activating receptor expression, including NKp30, NKp44, NKp46, 2B4, NKG2D and DNAM-1. Furthermore, GCs protected NK cells from IL-15-induced cell death. The combination of IL-15 with GCs favored the expansion of a relatively more immature CD16low/neg NK cell population, with high expression of NKG2A and CD94, and significantly lower expression of KIR (CD158a and CD158b) and CD57, compared to IL-15 alone. IL-15-expanded NK cells, in the presence or absence of GCs, did not express CD62L, CXCR1 or CCR7. However, the presence of GCs significantly increased the density of CXCR3 and induced strong CXCR4 expression on the surface of NK cells. Our data indicate that IL-15/GC-expanded NK cells, apart from their increased proliferation rate, retain their functional integrity and exhibit a migratory potential rendering them useful for adoptive transfer in NK cell-based cancer immunotherapy.  相似文献   

10.
Natural killer (NK) cell activation is strictly regulated to ensure that healthy cells are preserved, but tumour-transformed or virus-infected cells are recognized and eliminated. To carry out this selective killing, NK cells have an ample repertoire of receptors on their surface. Signalling by inhibitory and activating receptors by interaction with their ligands will determine whether the NK cell becomes activated and kills the target cell. Here, we show reduced expression of NKp46, NKp30, DNAM-1, CD244 and CD94/NKG2C activating receptors on NK cells from acute myeloid leukaemia patients. This reduction may be induced by chronic exposure to their ligands on leukaemic blasts. The analysis of ligands for NK cell-activating receptors showed that leukaemic blasts from the majority of patients express ligands for NK cell-activating receptors. DNAM-1 ligands are frequently expressed on blasts, whereas the expression of the NKG2D ligand MICA/B is found in half of the patients and CD48, a ligand for CD244, in only one-fourth of the patients. The decreased expression of NK cell-activating receptors and/or the heterogeneous expression of ligands for major receptors on leukaemic blasts can lead to an inadequate tumour immunosurveillance by NK cells. A better knowledge of the activating receptor repertoire on NK cells and their putative ligands on blasts together with the possibility to modulate their expression will open new possibilities for the use of NK cells in immunotherapy against leukaemia.  相似文献   

11.
Pig-to-human xenotransplantation has been proposed as a means to alleviate the shortage of human organs for transplantation, but cellular rejection remains a hurdle for successful xenograft survival. NK cells have been implicated in xenograft rejection and are tightly regulated by activating and inhibitory receptors recognizing ligands on potential target cells. The aim of the present study was to analyze the role of activating NK receptors including NKp30, NKp44, NKp46, and NKG2D in human xenogeneic NK cytotoxicity against porcine endothelial cells (pEC). (51)Cr release and Ab blocking assays were performed using freshly isolated, IL-2-activated polyclonal NK cell populations as well as a panel of NK clones. Freshly isolated NK cells are NKp44 negative and lysed pEC exclusively in an NKG2D-dependent fashion. In contrast, the lysis of pEC mediated by activated human NK cells depended on both NKp44 and NKG2D, since a complete protection of pEC was achieved only by simultaneous blocking of these activating NK receptors. Using a panel of NK clones, a highly significant correlation between anti-pig NK cytotoxicity and NKp44 expression levels was revealed. Other triggering receptors such as NKp30 and NKp46 were not involved in xenogeneic NK cytotoxicity. Finally, Ab-dependent cell-mediated cytotoxicity of pEC mediated by human NK cells in the presence of xenoreactive Ab was not affected by blocking of activating NK receptors. In conclusion, strategies aimed to inhibit interactions between NKp44 and NKG2D on human NK cells and so far unknown ligands on pEC may prevent direct NK responses against xenografts but not xenogeneic Ab-dependent cell-mediated cytotoxicity.  相似文献   

12.
Human natural killer (NK) cells are considered professional cytotoxic cells that are integrated into the effector branch of innate immunity during antiviral and antitumoral responses. The purpose of this study was to examine the peripheral distribution and expression of NK cell activation receptors from the fresh peripheral blood mononuclear cells of 30 breast cancer patients prior to any form of treatment (including surgery, chemotherapy, and radiotherapy), 10 benign breast pathology patients, and 24 control individuals. CD3CD56dimCD16bright NK cells (CD56dim NK) and CD3CD56brightCD16dim/− NK cells (CD56bright NK) were identified using flow cytometry. The circulating counts of CD56dim and CD56bright NK cells were not significantly different between the groups evaluated, nor were the counts of other leukocyte subsets between the breast cancer patients and benign breast pathology patients. However, in CD56dim NK cells, NKp44 expression was higher in breast cancer patients (P = .0302), whereas NKp30 (P = .0005), NKp46 (P = .0298), and NKG2D (P = .0005) expression was lower with respect to healthy donors. In CD56bright NK cells, NKp30 (P = .0007), NKp46 (P = .0012), and NKG2D (P = .0069) expression was lower in breast cancer patients compared with control group. Only NKG2D in CD56bright NK cells (P = .0208) and CD56dim NK cells (P = .0439) showed difference between benign breast pathology and breast cancer patients. Collectively, the current study showed phenotypic alterations in activation receptors on CD56dim and CD56bright NK cells, suggesting that breast cancer patients have decreased NK cell cytotoxicity.  相似文献   

13.
Natural killer (NK) cell function, based on the expression of activating and inhibitory natural killer receptors (NKRs), may become abnormal during human immunodeficiency virus (HIV) infection. In this study, we investigated changes in receptor expression with individual and combinational analysis on NK cell subsets in HIV-infected Chinese. The results showed that natural killer group 2 member D (NKG2D) expression on total NK cells decreased significantly in HIV infection, while the expressions of natural killer group 2 member A (NKG2A) and killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail 1 (KIR3DL1) on total NK cells were not significantly different between any of the groups including HIV-positive treatment-naïve group, AIDS treatment-naïve group, HAART-treatment AIDS group and HIV-negative control group. Individual analysis of NKG2A+ and KIR3DL1+ cells revealed no significant differences in expression in any NK cell subsets between any of the groups, but the combinational analysis of NKG2DNKG2A+, and NKG2DKIR3DL1+ on the NK CD56dim cell subset in the AIDS group were increased compared to the HIV-negative control group. On the contrary, NKG2DNKG2A+ expression on the CD56bright subset decreased in the AIDS group compared to the control group. Highly active antiretroviral therapy (HAART) treatment almost completely restored the levels of these receptor expressions. The results indicate that the distinct alteration of activating and inhibitory NKR expression on NK cells and its subsets occurred during HIV progression. Moreover, the imbalanced change of activating and inhibitory NKRs on NK cells and its subsets may explain the impaired NK cell immunity in HIV infected individuals.  相似文献   

14.
《Cytotherapy》2021,23(10):939-952
Background aimsTraditionally, natural killer (NK) cells are sourced from the peripheral blood of donors―a laborious and highly donor-specific process. Processes for generating NK cells from induced pluripotent stem cells (iPSCs) have demonstrated that it is possible to successfully generate renewable alloreactive NK cells that are not only functional in vivo but can also be genetically engineered for enhanced function. However, poor standardization and cumbersome differentiation procedures suggest that further improvements in the control of the differentiation process are necessary.MethodsHere the authors evaluated the potential of differentiating NK cells from centrally authenticated iPSCs under entirely chemically defined and serum-free conditions as well as their immunotherapeutic potential, after expansion in feeder-free media, against solid tumors targets. To address limitations of current differentiation approaches, the authors did not utilize feeder or stromal cell layers, TrypLE adaptation or peripheral blood during the differentiation process. The authors also evaluated the feasibility of utilizing centrally authenticated iPSC lines, thus circumventing protocol- and donor-induced variability associated with reprogramming approaches, and characterized these iPSC-NK cells in terms of cytotoxicity, cytokine production and degranulation potential against solid tumor cell lines and patient-derived targets.ResultsDifferentiation of iPSCs generated NK cells that were predominantly CD56+/CD16+/CD3 and expressed NK activation markers NKG2D, NKp30, NKp44, NKp46 and DNAM-1. These iPSC-NK cells mediated effector functions, including cytotoxicity, degranulation and IFN-γ production, in response to solid tumor targets, including patient-derived cancer cells, and could be cryopreserved and expanded in culture.ConclusionsThe ability to produce NK cells under defined conditions and the functional responses elicited by these iPSC-NK cells suggest that they could represent promising effectors in clinical adoptive transfer settings as a renewable source of donor-independent NK cells for immunotherapy of solid tumors.  相似文献   

15.
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.  相似文献   

16.
BackgroundThe role of natural killer (NK) cells in granulomatosis with polyangiitis (GPA) is poorly understood. We recently reported that peripheral blood NK cell percentages correlate with the suppression of GPA activity (cohort I). The purpose of the current study was to further characterize NK cell subsets, phenotype and function in a second GPA cohort (cohort II).MethodsPeripheral blood lymphocyte subsets were analyzed at a clinical diagnostic laboratory. Clinical data were extracted from medical records and patients were grouped according to their activity state (remission vs. active/non-remission). Separate analysis (cohort II, n = 22) and combined analysis (cohorts I and II, n = 34/57) of NK cell counts/percentages was performed. NK cell subsets and phenotypes were analyzed by multicolor flow cytometry. Cytotoxicity assays were performed using 51Cr-labeled K562 target cells.ResultsIn cohort II, NK cell counts were lower than the lower limit of normal in active GPA, despite normal percentages due to lymphopenia. NK cell counts, but not other lymphocyte counts, were significantly higher in remission. Combined analysis of cohorts I and II confirmed decreased NK cell counts in active GPA and increased percentages in long-term remission. Follow-up measurements of six patients revealed increasing NK cell percentages during successful induction therapy. Multicolor analysis from cohort II revealed that in active GPA, the CD56dim subset was responsible for decreased NK cell counts, expressed more frequently CD69, downregulated the Fc-receptor CD16 and upregulated the adhesion molecule CD54, the chemokine receptor CCR5 and the activating receptor NKG2C. In remission, these markers were unaltered or marginally altered. All other receptors investigated (NKp30, NKp44, NKp46, NKG2D, DNAM1, 2B4, CRACC, 41BB) remained unchanged. Natural cytotoxicity was not detectable in most patients with active GPA, but was restored in remission.ConclusionsNK cell numbers correlate inversely with GPA activity. Reduced CD56dim NK cells in active GPA have an activated phenotype, which intriguingly is associated with profound deficiency in cytotoxicity. These data suggest a function for NK cells in the pathogenesis and/or modulation of inflammation in GPA. NK cell numbers, phenotype (CD16, CD69, NKG2C) or overall natural cytotoxicity are promising candidates to serve as clinical biomarkers to determine GPA activity.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-016-1098-7) contains supplementary material, which is available to authorized users.  相似文献   

17.
Deficiencies of the T cell and NK cell CD3ζ signaling adapter protein in patients with cancer and autoimmune diseases are well documented, but mechanistic explanations are fragmentary. The stimulatory NKG2D receptor on T and NK cells mediates tumor immunity but can also promote local and systemic immune suppression in conditions of persistent NKG2D ligand induction that include cancer and certain autoimmune diseases. In this paper, we provide evidence that establishes a causative link between CD3ζ impairment and chronic NKG2D stimulation due to pathological ligand expression. We describe a mechanism whereby NKG2D signaling in human T and NK cells initiates Fas ligand/Fas-mediated caspase-3/-7 activation and resultant CD3ζ degradation. As a consequence, the functional capacities of the TCR, the low-affinity Fc receptor for IgG, and the NKp30 and NKp46 natural cytotoxicity receptors, which all signal through CD3ζ, are impaired. These findings are extended to ex vivo phenotypes of T and NK cells among tumor-infiltrating lymphocytes and in peripheral blood from patients with juvenile-onset lupus. Collectively, these results indicate that pathological NKG2D ligand expression leads to simultaneous impairment of multiple CD3ζ-dependent receptor functions, thus offering an explanation that may be applicable to CD3ζ deficiencies associated with diverse disease conditions.  相似文献   

18.
The influence of leptin and ghrelin, as well as their combined effects, on the expression of membrane molecules and cytokine production by NK cells from peripheral blood was studied in vitro. The effects of hormones were assayed at the concentrations corresponding to their peripheral blood levels in the course of physiological pregnancy. It was established that the investigated hormones exerted significant effects only at the concentrations typical of the II–III trimester of pregnancy. In particular, leptin and ghrelin and their combination increased the number of CD56brightNKp46+NK cells in the suspension of mononuclear cells and inhibited the expression of homing molecules CCR7 and inhibitor molecules LILRB in NKp46+NK cells. Leptin and its combination with ghrelin increased the expression of L-selectin in CD56brightNKp46+NK cells but inhibited the secretion of IL-10 by NKp46+NK cells. Leptin reduced the production of IL-4 by NKp46+ cells, while ghrelin eliminated this effect. The hormones did not influence the expression of inhibitory molecules NKG2A in NKp46+ cells and the production of TGF-β1, IL-17A, and IFN-γ by these cells. Thus, the investigated hormones at the concentrations typical of the II–III trimester of pregnancy effectively regulate the expression of membrane molecules and cytokine production by NK cells of the peripheral blood.  相似文献   

19.

Background

The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured.

Results

Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group.

Conclusions

Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a chronic exposure to viral and/or pro-inflammatory factors, and concomitantly might also influence the clearance of CIN 1-type lesion.  相似文献   

20.
BackgroundT-cell receptor-engineered T-cell therapies have achieved promising response rates against synovial sarcoma in clinical trials, but their applicability is limited owing to the HLA matching requirement. Chimeric antigen receptor (CAR) can redirect primary T cells to tumor-associated antigens without requiring HLA matching. However, various obstacles, including the paucity of targetable antigens, must be addressed for synovial sarcoma. Ligands for natural killer (NK) cell-activating receptors are highly expressed by tumor cells.MethodsThe surface expression of ligands for NK cell-activating receptors in synovial sarcoma cell lines was analyzed. We analyzed RNA sequencing data deposited in a public database to evaluate NKp44-ligand expression. Primary T cells retrovirally transduced with CAR targeting NKp44 ligands were evaluated for their functions in synovial sarcoma cells. Alterations induced by various stimuli, including a histone deacetylase inhibitor, a hypomethylating agent, inflammatory cytokines, and ionizing radiation, in the expression levels of NKp44 ligands were investigated.Results: Ligands for NKp44 and NKp30 were expressed in all cell lines. NKG2D ligands were barely expressed in a single cell line. None of the cell lines expressed NKp46 ligand. Primary synovial sarcoma cells expressed the mRNA of the truncated isoform of MLL5, a known cellular ligand for NKp44. NKp44-based CAR T cells specifically recognize synovial sarcoma cells, secrete interferon-γ, and exert suppressive effects on tumor cell growth. No stimulus altered the expression of NKp44 ligands.ConclusionNKp44-based CAR T cells can redirect primary human T cells to synovial sarcoma cells. CAR-based cell therapies may be an option for treating synovial sarcomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号