首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres.  相似文献   

2.
3.
Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein complex, is a mediator of telomere associations in mammalian cells. Using live-cell imaging, we show that expression of TRF1 or yellow fluorescent protein (YFP)-TRF1 fusion protein above endogenous levels prevents proper telomere resolution during mitosis. TRF1 overexpression results in telomere anaphase bridges and aggregates containing TRF1 protein and telomeric DNA. Site-specific protein cleavage of YFP-TRF1 by tobacco etch virus protease resolves telomere aggregates, indicating that telomere associations are mediated by TRF1. This study provides novel insight into the formation and resolution of telomere associations.  相似文献   

4.
Homologous recombination generates T-loop-sized deletions at human telomeres   总被引:30,自引:0,他引:30  
Wang RC  Smogorzewska A  de Lange T 《Cell》2004,119(3):355-368
The t-loop structure of mammalian telomeres is thought to repress nonhomologous end joining (NHEJ) at natural chromosome ends. Telomere NHEJ occurs upon loss of TRF2, a telomeric protein implicated in t-loop formation. Here we describe a mutant allele of TRF2, TRF2DeltaB, that suppressed NHEJ but induced catastrophic deletions of telomeric DNA. The deletion events were stochastic and occurred rapidly, generating dramatically shortened telomeres that were accompanied by a DNA damage response and induction of senescence. TRF2DeltaB-induced deletions depended on XRCC3, a protein implicated in Holliday junction resolution, and created t-loop-sized telomeric circles. These telomeric circles were also detected in unperturbed cells and suggested that t-loop deletion by homologous recombination (HR) might contribute to telomere attrition. Human ALT cells had abundant telomeric circles, pointing to frequent t-loop HR events that could promote rolling circle replication of telomeres in the absence of telomerase. These findings show that t-loop deletion by HR influences the integrity and dynamics of mammalian telomeres.  相似文献   

5.
Control of human telomere length by TRF1 and TRF2   总被引:52,自引:0,他引:52       下载免费PDF全文
Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.  相似文献   

6.
7.
Mammalian telomeres contain a duplex TTAGGG-repeat tract terminating in a 3' single-stranded overhang. TRF2 protein has been implicated in remodeling telomeres into duplex lariats, termed t-loops, in vitro and t-loops have been isolated from cells in vivo. To examine the features of the telomeric DNA essential for TRF2-promoted looping, model templates containing a 500 bp double-stranded TTAGGG tract and ending in different single-stranded overhangs were constructed. As assayed by electron microscopy, looped molecules containing most of the telomeric tract are observed with TRF2 at the loop junction. A TTAGGG-3' overhang of at least six nucleotides is required for loop formation. Termini with 5' overhangs, blunt ends or 3' termini with non-telomeric sequences at the junction are deficient in loop formation. Addition of non-telomeric sequences to the distal portion of a 3' overhang beginning with TTAGGG repeats only modestly diminishes looping. TRF2 preferentially localizes to the junction between the duplex repeats and the single-stranded overhang. Based on these findings we suggest a model for the mechanism by which TRF2 remodels telomeres into t-loops.  相似文献   

8.
9.
Telomeres are specialized structures at the ends of the chromosomes that, with the help of proteins--such as the telomere repeat-binding factor TRF2 -, form protective caps which are essential for chromosomal integrity. Investigating the structure and three-dimensional (3D) distribution of the telomeres and TRF2 in the nucleus, we now show that the telomeres of the immortal HaCaT keratinocytes are distributed in distinct non-overlapping territories within the inner third of the nuclear space in interphase cells, while they extend more widely during mitosis. TRF2 is present at the telomeres at all cell cycle phases. During mitosis additional TRF2 protein concentrates all around the chromosomes. This change in staining pattern correlates with a significant increase in TRF2 protein at the S/G2 transition as seen in Western blots of synchronized cells and is paralleled by a cell cycle-dependent regulation of TRF2 mRNA, arguing for a specific role of TRF2 during mitosis. The distinct territorial localization of telomeres is abrogated in a HaCaT variant that constitutively expresses c-Myc--a protein known to contribute to genomic instability. These cells are characterized by overlapping telomere territories, telomeric aggregates (TAs), that are accompanied by an overall irregular telomere distribution and a reduced level in TRF2 protein. These TAs which are readily detectable in interphase nuclei, are similarly present in mitotic cells, including cells in telophase. Thus, we propose that TAs, which subsequently also cluster their respective chromosomes, contribute to genomic instability by forcing an abnormal chromosome segregation during mitosis.  相似文献   

10.
The shelterin complex protects telomeres by preventing them from being degraded and recognized as double‐strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1‐year‐old) and old (2‐year‐old) mice using gene therapy can delay age‐associated pathologies. To this end, we used the nonintegrative adeno‐associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9‐TRF1 gene therapy significantly prevented age‐related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9‐TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere‐associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9‐TRF1 gene therapy results in an improved mouse health span.  相似文献   

11.
12.
TRF1, a duplex telomeric DNA-binding protein, plays an important role in telomere metabolism. We have previously reported that a fraction of endogenous TRF1 can stably exist free of telomere chromatin when it is phosphorylated at T371 by Cdk1; however, the role of this telomere-free (pT371)TRF1 has yet to be fully characterized. Here we show that phosphorylated (pT371)TRF1 is recruited to sites of DNA damage, forming damage-induced foci in response to ionizing radiation (IR), etoposide and camptothecin. We find that IR-induced (pT371)TRF1 foci formation is dependent on the ATM- and Mre11/Rad50/Nbs1-mediated DNA damage response. While loss of functional BRCA1 impairs the formation of IR-induced (pT371)TRF1 foci, depletion of either 53BP1 or Rif1 stimulates IR-induced (pT371)TRF1 foci formation. In addition, we show that TRF1 depletion or the lack of its phosphorylation at T371 impairs DNA end resection and repair of nontelomeric DNA double-strand breaks by homologous recombination. The lack of TRF1 phosphorylation at T371 also hampers the activation of the G2/M checkpoint and sensitizes cells to PARP inhibition, IR and camptothecin. Collectively, these results reveal a novel but important function of phosphorylated (pT371)TRF1 in facilitating DNA double-strand break repair and the maintenance of genome integrity.  相似文献   

13.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of φKO2.  相似文献   

14.
Similar to its human homologues TRF1 and TRF2, fission yeast Taz1 protein is a component of telomeric chromatin regulating proper telomere maintenance. As mammalian TRF1 and TRF2 proteins have been shown to directly bind telomeric DNA to form protein arrays and looped structures, termed t-loops, the ability of Taz1p to act on fission yeast telomeric DNA in similar ways was examined using purified protein and model DNA templates. When incubated with Taz1p, model telomeres containing 3' single-stranded telomeric overhangs formed t-loops at a frequency approaching 13%. Termini with blunt ends and non-telomeric overhangs were deficient in t-loop formation. In addition, we observed arrays of multiple Taz1p molecules bound to the telomeric regions, resembling the pattern of TRF1 binding. The presence of t-loops larger than the telomeric tract, a high frequency of end-bound DNAs and a donut shape of the Taz1p complex suggest that Taz1p binds the 3' overhang then extrudes a loop that grows in size as the donut slides along the duplex DNA. Based on these in vitro results we discuss possible general implications for fission yeast telomere dynamics.  相似文献   

15.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

16.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

17.
18.
TRF1, a telomere-binding protein, is important for telomere protection and homeostasis. PinX1 interacts with TRF1, but the physiological consequences of their interaction in telomere protection are not yet understood. Here we investigated PinX1 function on TRF1 stability in HeLa cells. PinX1 overexpression stabilized TRF1, but PinX1 depletion by siRNA led to TRF1 degradation, TRF1 ubiquitination, and less TRF1 telomere association. The depletion also induced DNA damage responses at telomeres and chromosome instability. These telomere dysfunctional phenotypes were in fact due to TRF1 deficiency. We also report that hTERT, a catalytic component of telomerase, plays dual roles in the TRF1 steady state pathway. PinX1-mediated TRF1 stability was not observed in hTERT-negative immortal cells, but was pronounced when hTERT was ectopically expressed in the cells, suggesting that hTERT may be needed in the PinX1-mediated TRF1 stability pathway. Interestingly, the knockdown of both PinX1 and hTERT in HeLa cells stabilized TRF1, suppressed DNA damage response activation, and restored chromosome stability. In summary, our findings suggested that PinX1 may maintain telomere integrity by regulating TRF1 stability and that hTERT may act as both a positive and a negative regulator of TRF1 homeostasis in a PinX1-dependent manner.  相似文献   

19.
Human telomeres are protected by TRF2. Inhibition of this telomeric protein results in partial loss of the telomeric 3' overhang and chromosome end fusions formed through nonhomologous end-joining (NHEJ). Here we report that ERCC1/XPF-deficient cells retained the telomeric overhang after TRF2 inhibition, identifying this nucleotide excision repair endonuclease as the culprit in overhang removal. Furthermore, these cells did not accumulate telomere fusions, suggesting that overhang processing is a prerequisite for NHEJ of telomeres. ERCC1/XPF was also identified as a component of the telomeric TRF2 complex. ERCC1/XPF-deficient mouse cells had a novel telomere phenotype, characterized by Telomeric DNA-containing Double Minute chromosomes (TDMs). We speculate that TDMs are formed through the recombination of telomeres with interstitial telomere-related sequences and that ERCC1/XPF functions to repress this process. Collectively, these data reveal an unanticipated involvement of the ERCC1/XPF NER endonuclease in the regulation of telomere integrity and establish that TRF2 prevents NHEJ at telomeres through protection of the telomeric overhang from ERCC1/XPF.  相似文献   

20.
Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show that phosphorylated (pS367)TRF1 forms distinct non-telomeric subnuclear foci and that these foci occur predominantly in S and G2 phases, implying that their formation is cell cycle regulated. We show that phosphorylated (pS367)TRF1-containing foci are sensitive to proteasome inhibition. We find that a phosphomimic mutation of S367D abrogates TRF1 binding to telomeric DNA and renders TRF1 susceptible to protein degradation. In addition, we demonstrate that overexpressed TRF1-S367D accumulates in the subnuclear domains containing phosphorylated (pS367)TRF1 and that these subnuclear domains overlap with nuclear proteasome centers. Taken together, these results suggest that phosphorylated (pS367)TRF1-containing foci may represent nuclear sites for TRF1 proteolysis. Furthermore, we show that TRF1 carrying the S367D mutation is unable to inhibit telomerase-dependent telomere lengthening or to suppress the formation of telomere doublets and telomere loss in TRF1-depleted cells, suggesting that S367 phosphorylation by ATM is important for the regulation of telomere length and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号