首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The impairment of the activity of the brain is a major feature of aging, which coincides with a decrease in the function of neural stem cells. We have previously shown that an extra copy of regulated Ink4/Arf and p53 activity, in s‐Ink4/Arf/p53 mice, elongates lifespan and delays aging. In this work, we examined the physiology of the s‐Ink4/Arf/p53 brain with aging, focusing on the neural stem cell (NSC) population. We show that cells derived from old s‐Ink4/Arf/p53 mice display enhanced neurosphere formation and self‐renewal activity compared with wt controls. This correlates with augmented expression of Sox2, Sox9, Glast, Ascl1, and Ars2 NSC markers in the subventricular zone (SVZ) and in the subgranular zone of the dentate gyrus (DG) niches. Furthermore, aged s‐Ink4/Arf/p53 mice express higher levels of Doublecortin and PSA‐NCAM (neuroblasts) and NeuN (neurons) in the olfactory bulbs (OB) and DG, indicating increased neurogenesis in vivo. Finally, aged s‐Ink4/Arf/p53 mice present enhanced behavioral and neuromuscular coordination activity. Together, these findings demonstrate that increased but regulated Ink4/Arf and p53 activity ameliorates age‐related deterioration of the central nervous system activity required to maintain the stem cell pool, providing a mechanism not only for the extended lifespan but also for the health span of these mice.  相似文献   

2.
3.
Bmi‐1 prevents stem cell aging, at least partly, by blocking expression of the cyclin‐dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi‐1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi‐1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi‐1/p16Ink4a pathway occurs during aging in vivo. Using real‐time in vivo imaging of p16Ink4a expression in Bmi‐1‐KO mice, we uncovered a novel function of the Bmi‐1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging‐related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly.  相似文献   

4.
The cyclin‐dependent kinase (Cdk) inhibitor p16Ink4a (p16) is a canonical mediator of cellular senescence and accumulates in aging tissues, where it constrains proliferation of some progenitor cells. However, whether p16 induction in tissues is sufficient to inhibit cell proliferation, mediate senescence, and/or impose aging features has remained unclear. To address these issues, we generated transgenic mice that permit conditional p16 expression. Broad induction at weaning inhibited proliferation of intestinal transit‐amplifying and Lgr5+ stem cells and rapidly imposed features of aging, including hair loss, skin wrinkling, reduced body weight and subcutaneous fat, an increased myeloid fraction in peripheral blood, poor dentition, and cataracts. Aging features were observed with multiple combinations of p16 transgenes and transactivators and were largely abrogated by a germline Cdk4 R24C mutation, confirming that they reflect Cdk inhibition. Senescence markers were not found, and de‐induction of p16, even after weeks of sustained expression, allowed rapid recovery of intestinal cell proliferation and reversal of aging features in most mice. These results suggest that p16‐mediated inhibition of Cdk activity is sufficient to inhibit cell proliferation and impose aging features in somatic tissues of mammals and that at least some of these aging features are reversible.  相似文献   

5.
6.
A growing number of long non‐coding RNAs (lncRNAs) have been found to be involved in diverse biological processes such as cell cycle regulation, embryonic development, and cell differentiation. However, limited knowledge is available concerning the underlying mechanisms of lncRNA functions. In this study, we found down‐regulation of TCONS_00041960 during adipogenic and osteogenic differentiation of glucocorticoid‐treated bone marrow mesenchymal stem cells (BMSCs). Furthermore, up‐regulation of TCONS_00041960 promoted expression of osteogenic genes Runx2, osterix, and osteocalcin, and anti‐adipogenic gene glucocorticoid‐induced leucine zipper (GILZ). Conversely, expression of adipocyte‐specific markers was decreased in the presence of over‐expressed TCONS_00041960. Mechanistically, we determined that TCONS_00041960 as a competing endogenous RNA interacted with miR‐204‐5p and miR‐125a‐3p to regulate Runx2 and GILZ, respectively. Overall, we identified a new TCONS_00041960‐miR‐204‐5p/miR‐125a‐3p‐Runx2/GILZ axis involved in regulation of adipogenic and osteogenic differentiation of glucocorticoid‐treated BMSCs.  相似文献   

7.
8.
9.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

10.
11.
The induction of H3K9 methylation by PIWIL4 at the p16Ink4a locus   总被引:1,自引:0,他引:1  
The field of epigenetics has made progress by the identification of the small RNA-mediated epigenetic modification. However, little is known about the key proteins. Here, we report that the human PIWI-like family is a candidate protein that is involved in the pathway responsible for chromatin remodeling. The PIWI-like family proteins, expressed as the Flag-fusion proteins, formed a bulky body and localized to the nuclear periphery. Transient transfection of PIWI-like 4 (PIWIL4), only member of the PIWI-like family that was ubiquitously expressed in human tissues, induced histone H3 lysine 9 methylation at the p16(Ink4a) (CDKN2A) locus. The elevated level of histone methylation resulted in the downregulation of the p16(Ink4a) gene. These results suggest PIWIL4 plays important roles in the chromatin-modifying pathway in human somatic cells.  相似文献   

12.
13.
14.
Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin‐6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c‐Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity. In this system, Ink4a/Arf‐null tissues cannot undergo senescence, fail to produce IL6, and cannot reprogram efficiently; whereas p53‐null tissues undergo extensive damage and senescence, produce high levels of IL6, and reprogram efficiently. Here, we have further explored the genetic determinants of in vivo reprogramming. We report that Ink4a, but not Arf, is necessary for OSKM‐induced senescence and, thereby, for the paracrine stimulation of reprogramming. However, in the absence of p53, IL6 production and reprogramming become independent of Ink4a, as revealed by the analysis of Ink4a/Arf/p53 deficient mice. In the case of the cell cycle inhibitor p21, its protein levels are highly elevated upon OSKM activation in a p53‐independent manner, and we show that p21‐null tissues present increased levels of senescence, IL6, and reprogramming. We also report that Il6‐mutant tissues are impaired in undergoing reprogramming, thus reinforcing the critical role of IL6 in reprogramming. Finally, young female mice present lower efficiency of in vivo reprogramming compared to male mice, and this gender difference disappears with aging, both observations being consistent with the known anti‐inflammatory effect of estrogens. The current findings regarding the interplay between senescence and reprogramming may conceivably apply to other contexts of tissue damage.  相似文献   

15.
To date, there are no effective therapies for tumors bearing NRAS mutations, which are present in 15–20% of human melanomas. Here we extend our earlier studies where we demonstrated that the small molecule BI‐69A11 inhibits the growth of melanoma cell lines. Gene expression analysis revealed the induction of interferon‐ and cell death‐related genes that were associated with responsiveness of melanoma cell lines to BI‐69A11. Strikingly, the administration of BI‐69A11 inhibited melanoma development in genetically modified mice bearing an inducible form of activated Nras and a deletion of the Ink4a gene (Nras(Q61K)::Ink4a?/?). Biweekly administration of BI‐69A11 starting at 10 weeks or as late as 24 weeks after the induction of mutant Nras expression inhibited melanoma development (100 and 36%, respectively). BI‐69A11 treatment did not inhibit the development of histiocytic sarcomas, which constitute about 50% of the tumors in this model. BI‐69A11‐resistant Nras(Q61K)::Ink4a?/? tumors exhibited increased CD45 expression, reflective of immune cell infiltration and upregulation of gene networks associated with the cytoskeleton, DNA damage response, and small molecule transport. The ability to attenuate the development of NRAS mutant melanomas supports further development of BI‐69A11 for clinical assessment.  相似文献   

16.
17.
Wild‐type p53 functions as a tumour suppressor while mutant p53 possesses oncogenic potential. Until now it remains unclear how a single mutation can transform p53 into a functionally distinct gene harbouring a new set of original cellular roles. Here we show that the most common p53 cancer mutants express a larger number and higher levels of shorter p53 protein isoforms that are translated from the mutated full‐length p53 mRNA. Cells expressing mutant p53 exhibit “gain‐of‐function” cancer phenotypes, such as enhanced cell survival, proliferation, invasion and adhesion, altered mammary tissue architecture and invasive cell structures. Interestingly, Δ160p53‐overexpressing cells behave in a similar manner. In contrast, an exogenous or endogenous mutant p53 that fails to express Δ160p53 due to specific mutations or antisense knock‐down loses pro‐oncogenic potential. Our data support a model in which “gain‐of‐function” phenotypes induced by p53 mutations depend on the shorter p53 isoforms. As a conserved wild‐type isoform, Δ160p53 has evolved during millions of years. We thus provide a rational explanation for the origin of the tumour‐promoting functions of p53 mutations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号