首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Unfolding of marginally stable proteins is a significant factor in commercial application of hydrophobic interaction chromatography (HIC). In this work, hydrogen-deuterium isotope exchange labeling has been used to monitor protein unfolding on HIC media for different stationary phase hydrophobicities and as a function of ammonium sulfate concentration. Circular dichroism and Raman spectroscopy were also used to characterize the structural perturbations experienced by solution phase protein that had been exposed to media and by protein adsorbed on media. As expected, greater instability is seen on chromatographic media with greater apparent hydrophobicity. However, increased salt concentrations also led to more unfolding, despite the well-known stabilizing effect of ammonium sulfate in solution. A thermodynamic framework is proposed to account for the effects of salt on both adsorption and stability during hydrophobic chromatography. Using appropriate estimates of input quantities, analysis with the framework can explain how salt effects on stability in chromatographic systems may contrast with solution stability.  相似文献   

2.
A two‐conformation, four‐state model has been proposed to describe protein adsorption and unfolding behavior on hydrophobic interaction chromatography (HIC) resins. In this work, we build upon previous study and application of a four‐state model to the effect of salt concentration on the adsorption and unfolding of the model protein α‐lactalbumin in HIC. Contributions to the apparent adsorption strength of the wild‐type protein from native and unfolded conformations, obtained using a deuterium labeling technique, reveal the free energy change and kinetics of unfolding on the resin, and demonstrate that surface unfolding is reversible. Additionally, variants of α‐lactalbumin in which one of the disulfide bonds is reduced were synthesized to examine the effects of conformational stability on apparent retention. Below the melting temperatures of the wild‐type protein and variants, reduction of a single disulfide bond significantly increases the apparent adsorption strength (~6–8 kJ/mol) due to increased instability of the protein. Finally, the four‐state model is used to accurately predict the apparent adsorption strength of a disulfide bond‐reduced variant. Biotechnol. Bioeng. 2009;102: 1416–1427. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Protein interactions in hydrophobic charge induction chromatography (HCIC)   总被引:4,自引:0,他引:4  
A quantitative understanding of how proteins interact with hydrophobic charge induction chromatographic resins is provided. Selectivity on this mode of chromatography for monoclonal antibodies as compared to other model proteins is probed by means of a linear retention vs pH plot. The pH-dependent adsorption behavior on this mode of chromatography for a hydrophobic, charged solute is described by taking into account the equilibrium between a hydrophobic, charged solute and an ionizable, heterocyclic ligand. By analogy, an equation that is seen to adequately describe macromolecular retention under linear conditions over a range of pH is developed. A preparative, nonlinear isotherm that can capture both pH and salt concentration dependency for proteins is proposed by using an exponentially modified Langmuir isotherm model. This model is seen to successfully simulate adsorption isotherms for a variety of proteins over a range of pHs and mobile phase salt concentrations. Finally, the widely differing retention characteristics of two monoclonal antibodies are used to derive two different strategies for improving separations on this mode of chromatography. A better understanding of protein binding to this class of resins is seen as an important step to future exploitation of this mode of chromatography for industrial scale purification of proteins.  相似文献   

4.
The effects of salt concentration in mobile phase, elution strategy, and hydrophobicity of stationary phase on lysozyme refolding in hydrophobic interaction chromatography (HIC) were investigated. Butyl Sepharose 4 Fast Flow, the least hydrophobic HIC resin among the tested adsorbent, showed the best refolding yield. The binding efficiency of unfolded lysozyme on the adsorbent was maximized when 1 and 0.4 M of initial and final concentration of ammonium sulfate was used in mobile phase, respectively. The optimum gradient strategy for refolding and elution of lysozyme was determined as linear increase of urea concentration to 4M. The optimized condition suggests the less hydrophobic environment than conventionally used salt solutions and HIC resins. Consequently, total refolding yield was improved 1.6 times comparing with optimized dilution-based batch refolding method.  相似文献   

5.
This study examines protein adsorption behavior and the effects of mobile phase modifiers in multimodal chromatographic systems. Chromatography results with a diverse protein library indicate that multimodal and ion exchange resins have markedly different protein binding behavior and selectivity. NMR results corroborate the stronger binding observed for the multimodal system and provide insight into the structural basis for the observed binding behavior. Protein-binding affinity and selectivity in multimodal and ion exchange systems are then examined using a variety of mobile phase modifiers. Arginine and guanidine are found to have dramatic effects on protein adsorption, yielding changes in selectivity in both chromatographic systems. While sodium caprylate leads to slightly weaker chromatographic retention for most proteins, certain proteins exhibit significant losses in retention in both systems. The presence of a competitive binding mechanism between the multimodal ligand and sodium caprylate for binding to ubiquitin is confirmed using STD NMR. Polyol mobile phase modifiers are shown to result in increased retention for weakly bound proteins and decreased retention for strongly bound proteins, indicating that the overall retention behavior is determined by a balance between changes in electrostatic and hydrophobic interactions. This work provides an improved understanding of protein adsorption and mobile phase modifier effects in multimodal chromatographic systems and sets the stage for future work to develop more selective protein separation systems.  相似文献   

6.
The self-associative properties of apolipoprotein A-I(Milano) (apoA-I(M)) were investigated in relationship to its anion exchange behavior on Q-Sepharose-HP with and without the addition of urea as a denaturant. Self-association was dependent on protein and urea concentration and both influenced interactions of the protein with the chromatographic surface. In the absence of urea, apoA-I(M) was highly associated and existed primarily as a mixture of homodimer, tetramer and hexamer forms. Under these conditions, since the binding strength was greater for the oligomer forms, broad, asymmetrical peaks were obtained in both isocratic and gradient elution. Adding urea depressed self-association and caused unfolding. This resulted in sharper peaks but also decreased the binding strength. Thus, under these conditions chromatographic elution occurred at lower salt concentrations. The adsorption isotherms obtained at high protein loadings were also influenced by self-association and by the varying binding strength of the differently associated and unfolded forms. The isotherms were thus dependent on protein, urea, and salt concentration. Maximum binding capacity was obtained in the absence of urea, where adsorption of oligomers was shown to be dominant. Adding urea reduced the apparent binding capacity and weakened the apparent binding strength. A steric mass action model accounting for competitive binding of the multiple associated forms was used to successfully describe the equilibrium binding behavior using parameters determined from isocratic elution and isotherm experiments.  相似文献   

7.
A multi‐dimensional fractionation and characterization scheme was developed for fast acquisition of the relevant molecular properties for protein separation from crude biological feedstocks by ion‐exchange chromatography (IEX), hydrophobic interaction chromatography (HIC), and size‐exclusion chromatography. In this approach, the linear IEX isotherm parameters were estimated from multiple linear salt‐gradient IEX data, while the nonlinear IEX parameters as well as the HIC isotherm parameters were obtained by the inverse method under column overloading conditions. Collected chromatographic fractions were analyzed by gel electrophoresis for estimation of molecular mass, followed by mass spectrometry for protein identification. The usefulness of the generated molecular properties data for rational decision‐making during downstream process development was equally demonstrated. Monoclonal antibody purification from crude hybridoma cell culture supernatant was used as case study. The obtained chromatographic parameters only apply to the employed stationary phases and operating conditions, hence prior high throughput screening of different chromatographic resins and mobile phase conditions is still a prerequisite. Nevertheless, it provides a quick, knowledge‐based approach for rationally synthesizing purification cascades prior to more detailed process optimization and evaluation. Biotechnol. Bioeng. 2012; 109: 3070–3083. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Hydrophobic interaction chromatography (HIC) is commonly used as a polishing step in monoclonal antibody purification processes. HIC offers an orthogonal selectivity to ion exchange chromatography and can be an effective step for aggregate clearance and host cell protein reduction. HIC, however, suffers from the limitation of use of high concentrations of kosmotropic salts to achieve the desired separation. These salts often pose a disposal concern in manufacturing facilities and at times can cause precipitation of the product. Here, we report an unconventional way of operating HIC in the flowthrough (FT) mode with no kosmotropic salt in the mobile phase. A very hydrophobic resin is selected as the stationary phase and the pH of the mobile phase is modulated to achieve the required selectivity. Under the pH conditions tested (pH 6.0 and below), antibodies typically become positively charged, which has an effect on its polarity and overall surface hydrophobicity. Optimum pH conditions were chosen under which the antibody product of interest flowed through while impurities such as aggregates and host cell proteins bound to the column. This strategy was tested with a panel of antibodies with varying pI and surface hydrophobicity. Performance was comparable to that observed using conventional HIC conditions with high salt.  相似文献   

9.
Hydrophobic interaction chromatography (HIC) is an important tool in the industrial purification of proteins from various sources. The HIC separation behavior of individual (or model) proteins has been widely researched by others. On the contrary, this study focused on the fractionation ability of HIC when it is challenged with whole proteomes. The impact of the nature of three different proteomes, that is, yeast, soybean, and Chinese hamster ovary cells, on HIC separation was investigated. In doing so, chromatography fractions obtained under standardized conditions were evaluated in terms of their overall hydrophobicity—as measured by fluorescence dye binding. This technique allowed for the calculation of an average protein surface hydrophobicity (S0) for each fraction; a unique correlation between S0 and the observed chromatographic behavior was established in each case. Following a similar strategy, the effect of three different ligands (polypropylene glycol, phenyl, and butyl) and two adsorbent particle sizes (65 and 100 µm) on the chromatographic behavior of the yeast proteome was evaluated. As expected, the superficial hydrophobicity of the proteins eluted is correlated with the salt concentration of its corresponding elution step. The findings reveled how—and in which extent—the type of ligand and the size of the beads actually influenced the fractionation of the complex biological mixture. Summarizing, the approach presented here can be instrumental to the study of the performance of chromatography adsorbents under conditions close to industrial practice and to the development of downstream processing strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Nonlinear adsorption plays an important role in determining the chromatographic behavior of proteins in preparative ion-exchange chromatography. In this article, the steric mass action (SMA) isotherm is used in conjunction with a mass transport model to describe nonlinear cation-exchange chromatography. Excellent agreement is observed between simulated and experimental step gradient separations of the proteins alpha-chymotryp-sinogen A, cytochrome C, and lysozyme. A systematic method of selecting the optimum step gradient program for a given separation problem is presented and employed to study optimization of step gradient chromatography under conditions of high mass loading. This article includes consideration of the effects of the adsorption properties of the feed stream, the feed stream concentration, protein solubility, and otherconstraints on the optimum separation conditions.(c) John Wiley & Sons, Inc.  相似文献   

11.
Neuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein of the calcium sensor family, modulates various functions in intracellular signaling pathways. The N-terminal glycine in this protein is myristoylated, which is presumably necessary for its physiological functions. In order to understand the structural role of myristoylation and calcium on conformational stability, we have investigated the equilibrium unfolding and refolding of myristoylated and non-myristoylated NCS-1. The unfolding of these two forms of NCS-1 in the presence of calcium is best characterized by a five-state equilibrium model, and multiple intermediates accumulate during unfolding. Calcium exerts an extrinsic stabilizing effect on both forms of the protein. In the absence of calcium, the stability of both forms is dramatically decreased, and the unfolding follows a four-state equilibrium model. The equilibrium transitions are fully reversible in the presence of calcium. Myristoylation affects the pattern of equilibrium transitions substantially but not the number of intermediates, suggesting a structural role. Our data suggest that myristoylation reduces the stiffening of the protein during initial unfolding in the presence of calcium. The effects of myristoylation are more pronounced when calcium is present, suggesting a relationship between them. Inactivating the third EF-hand motif (E120Q mutant) drastically affects the equilibrium unfolding transitions, and calcium has no effect on these transitions of the mutants. The unfolding transitions of both forms of the mutant are similar to the transitions followed by the apo forms of myristoylated and non-myristoylated NCS-1. These results suggest that the role of myristoylation in unfolding/refolding of the protein is largely dependent on the presence of calcium.  相似文献   

12.
13.
While reversed-phase chromatography (RPC) may be a powerful method for purification of proteins at the analytical scale, both preparative and analytical applications have been hindered by the complex chromatographic behavior of proteins compared to small molecules. Further, preparative applications have been limited because of poor yields caused by the denaturing conditions involved. One means for modulating both the stability and chromatographic behavior of proteins is through the use of added salt. In this investigation, we show how salt type and ionic strength affect protein conformation on RPC surfaces. Exposure of amide groups of adsorbed BPTI was monitored using nuclear magnetic resonance (NMR) spectroscopy and hydrogen-deuterium isotope exchange. Sodium chloride, sodium acetate, and ammonium sulfate were studied at ionic strengths up to I = 0.375, with adsorption hold times being 5 min and 2 h. We found that increasing ionic strength decreased exposure of the exchange reporter groups in essentially all cases. However, even at the same ionic strength the level and distribution of residue protection varied with salt type and hold time. NaCl does not protect certain reporter groups at all, while those that it does protect to some degree at short hold times can exchange slightly more at longer times. The pattern and level of protection for NaAc at short times is similar to that for NaCl, but at longer times more uniform protection is seen as the reporter groups completely exposed at short times become more protected. For (NH(4))(2)SO(4) the pattern of protection at short hold time is similar to those of the other salts, although it protects all groups much more. This would be expected from the Hofmeister series. However, at longer times the level of protection with (NH(4))(2)SO(4) decreases below that of the other salts, while it uniquely protects all groups to nearly the same level. Such subtle variations in the protein structure would not have been detected without the measurements and analysis used here. Chromatographic retention times and peak shapes were obtained for the above systems. Variations of behavior were seen that could not be correlated with any of the above protection patterns and levels or even with heuristics such as the Hofmeister series. This suggests further conformational changes upon elution may be critical to the retention process. However, an excellent correlation was found between peak width at half-height and the average degree of unfolding, as indicated by the average level of isotopic exchange. Thus, while further studies are needed to definitively determine the connection between protein unfolding and retention, use of this correlation may improve designing and screening for chromatographic conditions that minimize protein unfolding.  相似文献   

14.
The [2Fe–2S] ferredoxin from the extreme haloarchaeon Halobacterium salinarum is stable in high (>1.5 M) salt concentration. At low salt concentration the protein exhibits partial unfolding. The kinetics of unfolding was studied in low salt and in presence of urea in order to investigate the role of salt ions on the stability of the protein. The urea dependent unfolding, monitored by fluorescence of the tryptophan residues and circular dichroism, suggests that the native protein is stable at neutral pH, is destabilized in both acidic and alkaline environment, and involves the formation of kinetic intermediate(s). In contrast, the unfolding kinetics in low salt exhibits enhanced rate of unfolding with increase in pH value and is a two state process without the formation of intermediate. The unfolding at neutral pH is salt concentration dependent and occurs in two stages. The first stage, involves an initial fast phase (indicative of the formation of a hydrophobic collapsed state) followed by a relatively slow phase, and is dependent on the type of cation and anion. The second stage is considerably slower, proceeds with an increase in fluorescence intensity and is largely independent of the nature of salt. Our results thus show that the native form of the haloarchaeal ferredoxin (in high salt concentration) unfolds in low salt concentration through an apparently hydrophobic collapsed form, which leads to a kinetic intermediate. This intermediate then unfolds further to the low salt form of the protein.  相似文献   

15.
It is widely recognized that enhancement of protein stability is an important biotechnological goal. However, some applications at least, could actually benefit from stability being strongly dependent on a suitable environment variable, in such a way that enhanced stability or decreased stability could be realized as required. In therapeutic applications, for instance, a long shelf-life under storage conditions may be convenient, but a sufficiently fast degradation of the protein after it has performed the planned molecular task in vivo may avoid side effects and toxicity. Undesirable effects associated to high stability are also likely to occur in food-industry applications. Clearly, one fundamental factor involved here is the kinetic stability of the protein, which relates to the time-scale of the irreversible denaturation processes and which is determined to some significant extent by the free-energy barrier for unfolding (the barrier that "separates" the native state from the highly-susceptible-to-irreversible-alterations nonnative states). With an appropriate experimental model, we show that strong environment-dependencies of the thermodynamic and kinetic stabilities can be achieved using robust protein engineering. We use sequence-alignment analysis and simple computational electrostatics to design stabilizing and destabilizing mutations, the latter introducing interactions between like charges which are screened out at high salt. Our design procedures lead naturally to mutating regions which are mostly unstructured in the transition state for unfolding. As a result, the large salt effect on the thermodynamic stability of our consensus plus charge-reversal variant translates into dramatic changes in the time-scale associated to the unfolding barrier: from the order of years at high salt to the order of days at low salt. Certainly, large changes in salt concentration are not expected to occur in biological systems in vivo. Hence, proteins with strong salt-dependencies of the thermodynamic and kinetic stabilities are more likely to be of use in those cases in which high-stability is required only under storage conditions. A plausible scenario is that inclusion of high salt in liquid formulations will contribute to a long protein shelf-life, while the lower salt concentration under the conditions of the application will help prevent the side effects associated with high-stability which may potentially arise in some therapeutic and food-industry applications. From a more general viewpoint, this work shows that consensus engineering and electrostatic engineering can be readily combined and clarifies relevant aspects of the relation between thermodynamic stability and kinetic stability in proteins.  相似文献   

16.
In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification.HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media should be employed for future, more exhaustive optimization experiments and protein purification runs 4.The specific protein being purified here is recombinant green fluorescent protein (GFP); however, the approach may be adapted for purifying other proteins with one or more hydrophobic surface regions. GFP serves as a useful model protein, due to its stability, unique light absorbance peak at 397 nm, and fluorescence when exposed to UV light 5. Bacterial lysate containing wild type GFP was prepared in a high-salt buffer, loaded into a Bio-Rad DuoFlow medium pressure liquid chromatography system, and adsorbed to HiTrap HIC columns containing different HIC media. The protein was eluted from the columns and analyzed by in-line and post-run detection methods. Buffer blending, dynamic sample loop injection, sequential column selection, multi-wavelength analysis, and split fraction eluate collection increased the functionality of the system and reproducibility of the experimental approach.Download video file.(63M, mov)  相似文献   

17.
Many of the effects exerted on protein structure, stability, and dynamics by molecular crowding and confinement in the cellular environment can be mimicked by encapsulation in polymeric matrices. We have compared the stability and unfolding kinetics of a highly fluorescent mutant of Green Fluorescent Protein, GFPmut2, in solution and in wet, nanoporous silica gels. In the absence of denaturant, encapsulation does not induce any observable change in the circular dichroism and fluorescence emission spectra of GFPmut2. In solution, the unfolding induced by guanidinium chloride is well described by a thermodynamic and kinetic two-state process. In the gel, biphasic unfolding kinetics reveal that at least two alternative conformations of the native protein are significantly populated. The relative rates for the unfolding of each conformer differ by almost two orders of magnitude. The slower rate, once extrapolated to native solvent conditions, superimposes to that of the single unfolding phase observed in solution. Differences in the dependence on denaturant concentration are consistent with restrictions opposed by the gel to possibly expanded transition states and to the conformational entropy of the denatured ensemble. The observed behavior highlights the significance of investigating protein function and stability in different environments to uncover structural and dynamic properties that can escape detection in dilute solution, but might be relevant for proteins in vivo.  相似文献   

18.
Electrostatic contributions to the conformational stability of apoflavodoxin were studied by measurement of the proton and salt-linked stability of this highly acidic protein with urea and temperature denaturation. Structure-based calculations of electrostatic Gibbs free energy were performed in parallel over a range of pH values and salt concentrations with an empirical continuum method. The stability of apoflavodoxin was higher near the isoelectric point (pH 4) than at neutral pH. This behavior was captured quantitatively by the structure-based calculations. In addition, the calculations showed that increasing salt concentration in the range of 0 to 500 mM stabilized the protein, which was confirmed experimentally. The effects of salts on stability were strongly dependent on cationic species: K(+), Na(+), Ca(2+), and Mg(2+) exerted similar effects, much different from the effect measured in the presence of the bulky choline cation. Thus cations bind weakly to the negatively charged surface of apoflavodoxin. The similar magnitude of the effects exerted by different cations indicates that their hydration shells are not disrupted significantly by interactions with the protein. Site-directed mutagenesis of selected residues and the analysis of truncation variants indicate that cation binding is not site-specific and that the cation-binding regions are located in the central region of the protein sequence. Three-state analysis of the thermal denaturation indicates that the equilibrium intermediate populated during thermal unfolding is competent to bind cations. The unusual increase in the stability of apoflavodoxin at neutral pH affected by salts is likely to be a common property among highly acidic proteins.  相似文献   

19.
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyloid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation.  相似文献   

20.
Chen YR  Clark AC 《Biochemistry》2003,42(20):6310-6320
We have characterized the equilibrium and kinetic folding of a unique protein domain, caspase recruitment domain (CARD), of the RIP-like interacting CLARP kinase (RICK) (RICK-CARD), which adopts a alpha-helical Greek key fold. At equilibrium, the folding of RICK-CARD is well described by a two-state mechanism representing the native and unfolded ensembles. The protein is marginally stable, with a DeltaG(H)()2(O) of 3.0 +/- 0.15 kcal/mol and an m-value of 1.27 +/- 0.06 kcal mol(-1) M(-1) (30 mM Tris-HCl, pH 8, 1 mM DTT, 25 degrees C). While the m-value is constant, the protein stability decreases in the presence of moderate salt concentrations (below 200 mM) and then increases at higher salt concentrations. The results suggest that electrostatic interactions are stabilizing in the native protein, and the favorable Coulombic interactions are reduced at low ionic strength. Above 200 mM salt, the results are consistent with Hofmeister effects. The unfolding pathway of RICK-CARD is complex and contains at least three non-native conformations. The refolding pathway of RICK-CARD also is complex, and the data suggest that the unfolded protein folds via two intermediate conformations prior to reaching the native state. Overall, the data suggest the presence of kinetically trapped, or misfolded, species that are on-pathway both in refolding and in unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号