首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pasyukova EG  Vieira C  Mackay TF 《Genetics》2000,156(3):1129-1146
In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested.  相似文献   

2.
3.
The ERCC1-XPF heterodimer, a structure-specific DNA endonuclease, is best known for its function in the nucleotide excision repair (NER) pathway. The ERCC1 point mutation F231L, located at the hydrophobic interaction interface of ERCC1 (excision repair cross-complementation group 1) and XPF (xeroderma pigmentosum complementation group F), leads to severe NER pathway deficiencies. Here, we analyze biophysical properties and report the NMR structure of the complex of the C-terminal tandem helix-hairpin-helix domains of ERCC1-XPF that contains this mutation. The structures of wild type and the F231L mutant are very similar. The F231L mutation results in only a small disturbance of the ERCC1-XPF interface, where, in contrast to Phe231, Leu231 lacks interactions stabilizing the ERCC1-XPF complex. One of the two anchor points is severely distorted, and this results in a more dynamic complex, causing reduced stability and an increased dissociation rate of the mutant complex as compared with wild type. These data provide a biophysical explanation for the severe NER deficiencies caused by this mutation.  相似文献   

4.
Postreproductive life span remains a puzzle for evolutionary biologists. The explanation of increased inclusive fitness through parental care after reproduction that applies for humans is unrealistic for many species. We propose a new selective mechanism, independent of parental care, which relies on the hypothesis that postreproductive life span can evolve as an insurance against indeterminacy: longer life expectancy reduces the risk of dying by chance before the cessation of reproductive activity. We demonstrate numerically that the duration of evolved postreproductive life span is indeed expected to increase with variability in life span duration. An unprecedented assay of 11 strains of the collembola Folsomia candida shows the existence of (1) postreproductive life span in the absence of parental care; (2) genetic variability in mean postreproductive life span and postreproductive life span variability itself; (3) strong genetic correlation between latter traits. This new explanation brings along the novel idea that loose canalization of a trait (here, somatic life span) can itself act as a selective pressure on other traits.  相似文献   

5.
Recently, heterogeneity of the environment has been suggested as an important player in the evolution of life span variation. Established ageing theories propose that life span variation is the result of coevolution with other traits, such as stress resistance. This study aimed to compare these alternative hypotheses by examining the relationship between four environmental variables and different types of stress resistance traits with life span in 13 Drosophila species originating from tropical, subtropical and temperate environments (ecotypes). Average life span was found to differ significantly both between species and sexes, but only male life span correlated with the environment and cold resistance. While controlling for phylogeny, the environmental variable precipitation seasonality and resistance against cold‐induced stress explained most variation in male life span. Furthermore, male life span varied between species in a manner represented by environmental variables linked to the different ecotypes, such that tropical species lived longer and were less cold resistant. The current results suggest that general mechanisms underlying stress resistance and life span are unlikely. In addition, our results point to the environment independently shaping variation in life span and cold resistance rather than genetic interactions.  相似文献   

6.
7.
Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR-induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex, is a novel metabolic longevity factor in the CR pathway. Deleting the LAT1 gene abolishes life span extension induced by CR. Overexpressing Lat1 extends life span, and this life span extension is not further increased by CR. Similar to CR, life span extension by Lat1 overexpression largely requires mitochondrial respiration, indicating that mitochondrial metabolism plays an important role in CR. Interestingly, Lat1 overexpression does not require the Sir2 family to extend life span, suggesting that Lat1 mediates a branch of the CR pathway that functions in parallel to the Sir2 family. Lat1 is also a limiting longevity factor in nondividing cells in that overexpressing Lat1 extends cell survival during prolonged culture at stationary phase. Our studies suggest that Lat1 overexpression extends life span by increasing metabolic fitness of the cell. CR may therefore also extend life span and ameliorate age-associated diseases by increasing metabolic fitness through regulating central metabolic enzymes.  相似文献   

8.
9.
10.
Chronological life span is defined by how long a cell can survive in a non-dividing state. In yeast, it is measured by viability after entry into stationary phase. To date, some factors affecting chronological life span have been identified; however, the molecular details of how these factors regulate chronological life span have not yet been elucidated clearly. Because life span is a complicated phenomenon and is supposedly regulated by many factors, it is necessary to identify new factors affecting chronological life span to understand life span regulation. To this end, we have screened for long-lived mutants and identified Pma1, an essential P-type proton ATPase, as one of the determinants of chronological life span. We show that partial loss of Pma1 activity not only by mutations but also by treatment with the Pma1 inhibitory chemical vanadate resulted in the long-lived phenotype in Schizosaccharomyces pombe. These findings suggest a novel way to manipulate chronological life span by modulating Pma1 as a molecular target.  相似文献   

11.
Intrinsic and Extrinsic Controls of Fine Root Life Span   总被引:1,自引:0,他引:1  
Although fine roots play an integral role in biogeochemical cycling and supporting plant function, fundamental understanding of the mechanisms that control fine root life span is limited. Based on literature, we examined how intrinsic plant characteristics including root diameter, root branching order, rooting depth, and mycorrhizal symbiosis affect fine root life span, and how fine root life span differs with plant life form and foliar habit and between early versus late seral species. We also examined how soil nitrogen and water availability, temperature, and atmospheric carbon dioxide concentration influence fine root life span. We focused on evidence from rhizotron and minirhizotron observations which allow for individual roots to be directly monitored in situ. Fine root life span increased with increasing root diameter, was shorter for more distal than proximal roots, and increased with increasing rooting depth, but was not influenced by mycorrhizal symbiosis. Trees had the longest fine root life spans of all the plant life forms, followed by grasses, lianas, shrubs, and forbs. Among trees, deciduous species had shorter fine root life spans than evergreen species. Fine root life span appears to decrease with increasing temperature and increase with soil water availability, whereas the effects of soil nitrogen availability and atmospheric carbon dioxide concentration on fine root life span were highly inconsistent among studies. Our findings indicate that root morphological characteristics and plant traits are useful predictors of fine root life span. However, environmental influences on fine root life span remain poorly understood due to the limited number of respective studies. Future studies of root demographic processes are needed to better understand environmental controls of fine root life span. It is also critical that research continues into developing more direct and less invasive techniques for studying root demographics.  相似文献   

12.
Sir2 blocks extreme life-span extension   总被引:18,自引:0,他引:18  
Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological life-span extension. Inactivation of Sir2 causes uptake and catabolism of ethanol and upregulation of many stress-resistance and sporulation genes. These changes while sufficient to extend chronological life span in wild-type yeast require severe calorie restriction or additional mutations to extend life span of sir2Delta mutants. Our results demonstrate that effects of SIR2 on chronological life span are opposite to replicatve life span and suggest that the relevant activities of Sir2-like deacetylases may also be complex in higher eukaryotes.  相似文献   

13.
How perennial are perennial plants?   总被引:13,自引:0,他引:13  
Johan Ehrln  Kari Lehtil 《Oikos》2002,98(2):308-322
Trade-offs involving life span are important in the molding of plant life histories. However, the empirical examination of such patterns has so far been limited by the fact that information on life span is mainly available in terms of discrete categories; annuals, semelparous perennials and iteroparous perennials. We used transition matrix models to project continuous estimates of conditional life spans from published information on size- or stage-structured demography for 71 perennial plant species. The projected life span ranged from 4.3 to 988.6 years and more than half of the species had a life span of more than 35 years. Woody plants had on average a projected life span more than four times as long as non-woody plants. Life spans were higher in forests than in open habitats and individuals of non-clonal species tended to have a longer life span than ramets of clonal species. Self-incompatible plants on average lived longer than self-compatible plants. There were no clear relations between life span and geographical region, dispersal syndrome, pollination mode, seed size or the presence of a seed bank. We conclude that accurate estimates of life span are central to understand how longevity is correlated to other traits within the group of perennial plants.  相似文献   

14.
A correlation is known to exist in yeast and other organisms between the cellular resistance to stress and the life span. The aim of this study was to examine whether stress treatment does affect the generative life span of yeast cells. Both heat shock (38 degrees C, 30 min) and osmotic stress (0.3 M NaCl, 1 h) applied cyclically were found to increase the mean and maximum life span of Saccharomyces cerevisiae. Both effects were more pronounced in superoxide dismutase-deficient yeast strains (up to 50% prolongation of mean life span and up to 30% prolongation of maximum life span) than in their wild-type counterparts. These data point to the importance of the antioxidant barrier in the stress-induced prolongation of yeast life span.  相似文献   

15.
Studies have been made on the relationship between incubation temperature (20-30 degrees C) of D. melanogaster and the life span as well as the content of various products of lipid peroxidation. It was shown that the increase in the environmental temperature results in the decrease in the life span, the content of unsaturated fatty acids and conjugated hydroxyperoxids; ketodienic content increases. Strong correlation was observed between the life span and the content of peroxidation products. As it is indicated by coefficients of bifactorial linear regression with interaction, conjugated hydroperoxids and ketodiens exert negative influence on the life span. Their combined effect on the life span is less significant than the sum of their separate effects, which indicates the existence of common "canals" of their influences on the life span.  相似文献   

16.
Increased protection from reactive oxygen species (ROS) is believed to increase life span. However, it has not been clearly demonstrated that endogenous ROS production actually limits normal life span. We have identified a mutation in the Caenorhabditis elegans iron sulfur protein (isp-1) of mitochondrial complex III, which results in low oxygen consumption, decreased sensitivity to ROS, and increased life span. Furthermore, combining isp-1(qm150) with a mutation (daf-2) that increases resistance to ROS does not result in any significant further increase in adult life span. These findings indicate that both isp-1 and daf-2 mutations increase life span by lowering oxidative stress and result in the maximum life span increase that can be produced in this way.  相似文献   

17.
18.
We have explored the role of mitochondrial function in aging by genetically and pharmacologically modifying yeast cellular respiration production during the exponential and/or stationary growth phases and determining how this affects chronological life span (CLS). Our results demonstrate that respiration is essential during both growth phases for standard CLS, but that yeast have a large respiratory capacity, and only deficiencies below a threshold (~40% of wild-type) significantly curtail CLS. Extension of CLS by caloric restriction also required respiration above a similar threshold during exponential growth and completely alleviated the need for respiration in the stationary phase. Finally, we show that supplementation of media with 1% trehalose, a storage carbohydrate, restores wild-type CLS to respiratory-null cells. We conclude that mitochondrial respiratory thresholds regulate yeast CLS and its extension by caloric restriction by increasing stress resistance, an important component of which is the optimal accumulation and mobilization of nutrient stores.  相似文献   

19.
The relationships between mitochondrial respiration, reactive oxygen species (ROS), and life span are complex and remain controversial. Inhibition of the target of rapamycin (TOR) signaling pathway extends life span in several model organisms. We show here that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. Unlike previously reported pathways regulating chronological life span, we demonstrate that deletion of TOR1 delays aging independently of the antioxidant gene SOD2. Furthermore, wild-type and tor1 null strains differ in life span only when respiration competent and grown in normoxia in the presence of glucose. We propose that inhibition of TOR signaling causes derepression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span.  相似文献   

20.
Leaf life span and plant phenology are central elements in strategies for plant carbon gain and nutrient conservation. Although few studies have found that leaf life span correlate with the patterns of leaf dynamics and reproductive output, but there have not been sufficient conclusive tests for relationships between leaf life span and plant phenological traits, the forms and strengths of such relationships are poorly understood. This study was conducted with 49 herb and shrub species collected from the eastern portion of the Tibetan Plateau and grown together in a common garden setting. We investigated leaf life span, the periods of leaf production and death, the time lag between leaf production and death, and the period of plant reproduction (i.e., flowering and fruiting). Interspecific relationships of leaf life span with leaf dynamics and reproduction period were determined. Leaf production period was far longer than leaf death period and largely reflected the interspecific variation of leaf life span. Moreover, leaf life span was positively correlated with the length of reproduction (i.e., flowering and fruiting) period. These relationships were generally consistent across different subgroups of species (herbs vs. shrubs) and indicate potentially widely applicable relationships between LLS and aboveground phenology. We concluded that leaf life span is associated not simply with the dynamics of the leaf itself but with reproduction period. The results demonstrate a plant trade‐off in resource allocation between production and reproduction and a coordinated arrangement of leaves, flowers, and fruits in their time investment. Our results provide insight into the relationship between leaf life span and plant phenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号