首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decauridylate containing exclusively a 2'-5' phospho-diester bond ([2'-5']U10) served as a template for the synthesis of oligoadenylates [oligo(A)s] from the 5'-phosphorimidazolide of 2'-5' diadenylate (ImpA-2'p5'A). Joining of [2'-5']U10and ImpA2'p5'A also took place in substantial amounts to yield long-chain oligoribonucleotides in the template-directed reaction. An unusual CD spectrum ascribed to helix formation between [2'-5']U10and [2'-5'](pA)2was observed under the same conditions as that of the template-directed reaction. The 3'-5' linked decauridylate ([3'-5']U10) also promoted the template-directed synthesis of oligo(A)s from ImpA2'p5'A, but more slowly compared with [2'-5']U10. The results indicate that short-chain RNA oligomers with a 2'-5' phosphodiester bond could lead to longer oligoribonucleotides by template-directed chain elongation.  相似文献   

2.
Metabolically stable phosphorothioate tetramer analogues of (2'-5')(A)n with Rp and/or Sp chirality in the 2'-5'-phosphodiester linkages constitute a new class of antiviral agents since they mimic the effects of interferons. Three of the diastereomeric 5'-monophosphates (i.e., pRpRpRp, pSpRpRp, and pRpSpSp) bind to and activate RNase L from extracts of HeLa cells. However, the pSpSpSp (2'-5')-(A)4-phosphorothioate is unique in that it binds to, but cannot activate, RNase L to cleave rRNA. When microinjected into the cytoplasm of HeLa cells followed by virus infection, the pRpRpRp, pSpRpRp, and pRpSpSp (2'-5')(A)4-phosphorothioates demonstrate antiviral activity, as does (2'-5')(A)4ox-red, an active (2'-5')(A)n analogue. When microinjected simultaneously with (2'-5')(A)nox-red, an active the pSpSpSp (2'-5')(A)4-phosphorothioate inhibits activation of RNase L in HeLa cells, thereby blocking direct protection of vesicular stomatitis virus. The agonist and antagonist properties of pRpRpRp and pSpSpSp, respectively, are transient probably as a consequence of the hydrolysis of the 5'-monophosphate and formation of the less active (2'-5')(A)4-phosphorothioate cores. The possible use of these (2'-5')(A)4-phosphorothioates as tools for dissecting the biological significance of the (2'-5')(A)n system or in antiviral chemotherapy is discussed.  相似文献   

3.
C Lee  R J Suhadolnik 《FEBS letters》1983,157(1):205-209
The introduction of the cordycepin analog of (2'-5')An, (2'-5')ppp(3'dAp)n3'dA [referred to as (2'-5')p33'dAn], into mouse L929 cells and cultured human fibroblasts resulted in a dose-dependent inhibition of protein synthesis which was comparable to the inhibition observed by (2'-5')ppp(Ap)nA [referred to as (2'-5')p3An]. The inhibition of protein synthesis by (2'-5')p33'dAn was much more persistent than that of the naturally occurring (2'-5')p3An following prolonged incubation of cells. Furthermore, the (2'-5')p3An was cytotoxic to mammalian cells in culture, whereas the (2'-5')p33'dAn was not.  相似文献   

4.
Abstract: Neurofibroma type 1 tissue was investigated for the presence of growth-promoting activity on human neuroblastoma cells. The activity was isolated by gel filtration and reversed-phase column chromatographs from neurofibroma type 1 extracts. An adenosine-containing dinucleotide (adenylyl(3'-5')cytidine-3'-phosphate) was identified as one of the major components of the activities by its enzymatic fragmentation and liquid chromatography/mass spectrometry. Synthetic adenosine-containing dinucleotide derivatives such as cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, adenylyl(3'-5')cytidine, and adenylyl(2'-5')cytidine showed a similar action. Cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, and adenylyl(2'-5')cytidine, which are able to release a free adenosine through enzymatic hydrolysis, in particular elicited a strong activity corresponding to that of adenosine with the highest action. These results suggest that neuroblastoma cells are able to use adenosine-containing dinucleotides as well as mononucleotides for their survival and proliferation.  相似文献   

5.
Two 5'-modified (2'-5')(A)4 oligomers with an increased resistance to phosphatase degradation were synthesized and evaluated for their ability to develop an antiviral response when introduced into intact cells by microinjection or by chemical conjugation to poly(L-lysine). The enzymatic synthesis of 5'-gamma-phosphorothioate and beta,gamma-difluoromethylene (2'-5')(A)4 from adenosine 5'-O-(3-thiotriphosphate) and adenosine beta,gamma-difluoromethylenetriphosphate by (2'-5')-oligoadenylate synthetase is described. The isolation and characterization of these (2'-5')(A)4 analogues were achieved by high-performance liquid chromatography. The structures of 5'-modified tetramers were corroborated by enzyme digestion. These two 5'-modified tetramers compete as efficiently as natural (2'-5')(A)4 for the binding of a radiolabeled (2'-5')(A)4 probe to ribonuclease (RNase) L. Nevertheless, at the opposite to 5'-gamma-phosphorothioate (2'-5')(A)4, beta,gamma-difluoromethylene (2'-5')(A)4 failed to induce an antiviral response after microinjection in HeLa cells. In addition, it behaves as an antagonist of RNase L as demonstrated by its ability to inhibit the antiviral properties of 5'-gamma-phosphorothioate (2'-5')(A)4 when both are microinjected in HeLa cells. The increased metabolic stability of 5'-gamma-phosphorothioate (2'-5')(A)4 as compared to that of (2'-5')(A)4 was first demonstrated in cell-free extracts and then confirmed in intact cells after introduction in the form of a conjugate to poly(L-lysine). Indeed, 5'-gamma-phosphorothioate (2'-5')(A)4-poly(L-lysine) conjugate induces protein synthesis inhibition and characteristic ribosomal RNA cleavages for longer times than unmodified (2'-5')(A)4-poly(L-lysine) in the same cell system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
B Bayard  C Bisbal  B Lebleu 《Biochemistry》1986,25(12):3730-3736
Molecular hybrids were synthesized by coupling (2'-5')(A)n oligoadenylates or 2-5A, an intracellular mediator involved in antiviral activity of interferons (IFNs), with poly(L-lysine) used as a membrane carrier. (2'-5')(A)n in its free form was not taken up by cells, probably because of its ionic character. Conjugation with the polypeptide carrier overcame this problem and enabled its pharmacological properties to be developed. The alpha-glycol group of individual (2'-5')(A)n oligomers was oxidized by periodate oxidation and conjugated by an amino reductive reaction to poly(L-lysine), Mr 14 000, in a molar ratio of 5:1. These hybrid molecules left the biologically active 5' end moiety of the (2'-5')(A)n molecule unchanged, and in particular its triphosphate group, and stabilized the molecule by increasing its resistance to phosphodiesterase hydrolysis. A dose-dependent inhibition of virus growth was observed on concomitant incubation of (2'-5')(A)n-poly(L-lysine) conjugates with vesicular stomatitis virus infected L1210 cell cultures. This was a result of the activation of the (2'-5')(A)n-dependent endoribonuclease (RNase L) by intracellularly delivered (2'-5')(A)n as in some IFN-treated virus-infected cells. Indeed, (2'-5')(A)n-poly(L-lysine) conjugates bind RNase L effectively as can be seen from their ability to compete with authentic (2'-5')(A)n in a cell-free radiobinding assay. Moreover, (2'-5')(A)n-poly(L-lysine) conjugates promote transient inhibition of protein synthesis and a characteristic cleavage pattern of ribosomal RNAs in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The (Rp)- and (Sp)-diastereoisomers of thymidyl 3'-(4-nitrophenyl phosphorothioate) (1) were found to act as unusual substrates for acid deoxyribonuclease (DNase II). Instead of the expected thymidine 3'-phosphorothioate, the product resulting from the reaction of (Rp)-1 catalyzed by DNase II was identified as (Sp, Rp)-thymidyl (3'-5')thymidyl phosphorothioate 3'-(4-nitrophenyl phosphorothioate), while that from (Sp)-1 has been recognized as a 10:1 mixture of (Sp, Rp)-thymidyl (3'-5')thymidyl phosphorothioate 5'-(4-nitrophenyl phosphorothioate) and (Rp, Sp)-thymidyl (3'-5')-thymidyl phosphorothioate 3'-(4-nitrophenyl phosphorothioate), respectively. Both types of transnucleotidylations were found to occur with retention of configuration at phosphorus. Stereochemical results may be interpreted in terms of two step mechanisms involving the formation of the intermediate, covalent substrate enzyme complexes.  相似文献   

8.
Metabolically stable analogues of (2'-5')oligo(adenylate), (2'-5')(A)n, might constitute a new class of antiviral agents as they mimic some of the effects of interferons. 2'-O-phosphoglyceryl derivatives of (2'-5')(A)n oligomers, (2'-5')(A)n-PGro have been synthesized by chemical modification of their terminal ribose residue. Such analogues are resistant to degradation by phosphodiesterases but remain sensitive to phosphatase activity, at least in cell-free extracts. In line with its increased stability, (2'-5')(A)n-PGro has a powerful antiviral activity against an RNA virus when microinjected with micropipettes into the cytoplasm of intact cells. This antiviral activity remains transient however, possibly as a consequence of degradation in intact cells. Since (2'-5')(A)n and its derivatives do not easily cross cell membranes, their possible use in antiviral chemotherapy is tightly linked with the development of vectors suitable for their administration in vivo.  相似文献   

9.
2'-5'-Linked oligoadenylic acid 5'-triphosphates (2-5A) having chain lengths of 2-4 have been synthesized by polymerization of 3'-O-(o-nitrobenzyl)-N-benzoyladenosine 5'-phosphate followed by 5'-triphosphorylation via the imidazolidates. A large scale preparation of 5'-O-phosphoryladenylyl-(2'-5')-adenylyl-(2'-5')-adenosine was performed by the phosphotriester method using 5'-O-monomethoxytrityl-3'-O-(o-nitrobenzyl)-N-benzoyladenosine 2'-O-p-chlorophenylphosphate and 5'-O-phosphorodianilido-3'-O-(o-nitrobenzyl)-N-benzoyladenosine 2'-O-p-chlorophenylphosphate as intermediates. The trimer was also triphosphorylated by the imidazolide method. CD spectra for 5'-mono and triphosphorylated 2'-5' adenylates were measured as well as their UV hypochromicities. This triester method was also applied to the synthesis of 3',5'-bisphosphorylated protected oligoadenylic acids with natural 3'-5' linkages which could be used for further condensations to yield 5'-phosphorylated polynucleotides.  相似文献   

10.
We have designed and synthesized mixed backbone oligonucleotides (MBOs) containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments. Thermal melting studies of the phosphodiester MBOs (three 2'-5'linkages at each end) with the complementary 3'-5'-DNA and -RNA target strands suggest that 2'-5'-ribonucleoside incorporation into 3'-5'-oligodeoxyribonucleotides reduces binding to the target strands compared with an all 3'-5'-oligodeoxyribonucleotide of the same sequence and length. Increasing the number of 2'-5'linkages (from six to nine) further reduces binding to the DNA target strand more than the RNA target strand [Kandimalla,E.R. and Agrawal,S. (1996)Nucleic Acids Symp. Ser., 35, 125-126]. Phosphorothioate (PS) analogs of MBOs destabilize the duplex with the DNA target strand more than the duplex with the RNA target strand. Circular dichroism studies indicate that the duplexes of MBOs with the DNA and RNA target strands have spectral characteristics of both A- and B-type conformations. Compared with the control oligonucleotide, MBOs exhibit moderately higher stability against snake venom phosphodiesterase, S1 nuclease and in fetal calf serum. Although 2'-5'modification does not evoke RNase H activity, this modification does not effect the RNase H activation property of the 3'-5'-deoxyribonucleotide segment adjacent to the modification. In vitro studies with MBOs suggest that they have lesser effects on cell proliferation, clotting prolongation and hemolytic complement lysis than do control PS oligodeoxyribonucleotides. PS analogs of MBOs show HIV-1 inhibition comparable with that of a control PS oligodeoxyribonucleotide with all 3'-5'linkages. The current results suggest that a limited number of 2'-5'linkages could be used in conjunction with PS oligonucleotides to further modulate the properties of antisense oligonucleotides as therapeutic agents.  相似文献   

11.
Pugh RA  Wu CG  Spies M 《The EMBO journal》2012,31(2):503-514
Structurally similar superfamily I (SF1) and II (SF2) helicases translocate on single-stranded DNA (ssDNA) with defined polarity either in the 5'-3' or in the 3'-5' direction. Both 5'-3' and 3'-5' translocating helicases contain the same motor core comprising two RecA-like folds. SF1 helicases of opposite polarity bind ssDNA with the same orientation, and translocate in opposite directions by employing a reverse sequence of the conformational changes within the motor domains. Here, using proteolytic DNA and mutational analysis, we have determined that SF2B helicases bind ssDNA with the same orientation as their 3'-5' counterparts. Further, 5'-3' translocation polarity requires conserved residues in HD1 and the FeS cluster containing domain. Finally, we propose the FeS cluster-containing domain also provides a wedge-like feature that is the point of duplex separation during unwinding.  相似文献   

12.
The 40-kDa 2'-5'-oligoadenylate [(2'-5') (A)n] synthetase isoenzyme was proven to be a mediator of the inhibition of encephalomyocarditis virus (EMCV) replication by interferon (IFN). When activated by double-stranded RNA, this enzyme converts ATP into 2'-5'-oligoadenylate [(2'-5') (A)n], and (2'-5') (A)n was found to accumulate in IFN-treated, EMCV-infected cells. The only known function of (2'-5') (A)n is the activation of RNase L, a latent RNase, and this was also implicated in the inhibition of EMCV replication. Intermediates or side products in EMCV RNA replication, presumed to be partially double stranded, were shown to activate (2'-5') (A)n synthetase in vitro. These findings served as the basis of the long-standing hypothesis that the activator of (2'-5') (A)n synthetase in IFN-treated, EMCV-infected cells is the viral RNA. To test this hypothesis, we have generated a polyclonal rabbit antiserum to the human 40-kDa (2'-5') (A)n synthetase. The antiserum immunoprecipitated, from IFN-treated HeLa cells that had been infected with EMCV, the 40-kDa (2'-5') (A)n synthetase protein in complex with both strands of EMCV RNA. The immunoprecipitate was active in (2'-5') (A)n synthesis even without addition of double-stranded RNA, whereas the immunoprecipitate from IFN-treated, uninfected cells was not. These and other results demonstrate that in IFN-treated, EMCV-infected cells, viral RNA is bound to the (2'-5') (A)n synthetase and suggest that the agent activating the (2'-5') (A)n synthetase is the bound viral RNA.  相似文献   

13.
Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.  相似文献   

14.
The structural requirements of (2'-5')-oligoadenylic acid (pppA(2'p5'A)x, X greater than or equal to 1 or (2'-5'An) for inhibition of protein synthesis in cells were examined with a modified calcium-coprecipitation technique, using a series of trinucleotide analogs (pppA2'p5'A2'p5'N, N=rC, rG, rU, T, dC, dG, dA). In this system both the degree and the duration of the inhibition of protein synthesis were dependent on the added concentration of (2'-5')A3. Of all the heterotrimers, only the deoxy A derivative was active as an inhibitor of protein synthesis, while the other members of the analog series were found to have no inhibitory effects. In competition experiments between (2'-5')A3 and the non-active analogs, three heterotrimers were shown to reduce the activity of (2'-5')A3 in protein inhibition. In contrast, the dephosphorylated (2'-5')A3 had no inhibitory effect and was not effective in blocking (2'-5')A3. These results indicate that the 5'-terminal triphosphate is important for binding of (2'-5')A3 to the site of (2'-5')An action and the adenine base at the 2'-terminus is important for activating the machinery responsible for protein synthesis inhibition in the cells, most likely the (2'-5')An-activated nuclease.  相似文献   

15.
Oligodeoxynucleotides modified at both 5'- and 3'-ends with inverted thymidine (5'-,3'-inverted T) were introduced as new reagents for antisense strategies. These modifications were performed to make the oligodeoxynucleotides resistant to nucleases. The effectiveness of these oligodeoxynucleotides was evaluated in terms of inhibition of synthesis of midkine (MK), a heparin-binding growth factor, and consequent inhibition of growth of CMT-93 mouse rectal carcinoma cells. 5'-,3'-Inverted T antisense MK suppressed synthesis of MK by CMT-93 cells and their growth in culture. Furthermore, 5'-,3'-inverted T oligodeoxynucleotides exhibited less cytotoxicity and better stability than phosphorothioate oligodeoxynucleotides. When 5'-,3'-inverted T antisense MK was mixed with atelocollagen, and injected into CMT-93 tumors pregrown in nude mice, tumor growth was markedly suppressed as compared with tumors injected with sense controls. The suppressive effect of 5'-,3'-inverted T antisense MK on tumor growth was stronger than that of phosphorothioate antisense MK. These findings indicated the usefulness of inverted thymidine-modified antisense oligodeoxynucleotides as a new reagent instead of phosphorothioate-modified oligodeoxynucleotides.  相似文献   

16.
Hovanessian AG  Justesen J 《Biochimie》2007,89(6-7):779-788
The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.  相似文献   

17.
A comparative study was made of the effects of several symmetrical tetrachlorobiphenyls (TCBs) on the electron transfer from succinate to oxygen of rat liver mitochondria, and some differences in effects caused by the different chlorine positions of the biphenyl ring were clarified. TCBs used in this study included 2,3,2',3'-, 2,4,2',4'-, 2,5,2',5'-, 2,6,2',6'-, and 3,4,3',4'-TCBs. The inhibitory actions of 2,3,2',3'-, 2,4,2',4'-, and 2,5,2',5'-TCBs on succinate oxidase were potent, while those caused by 2,6,2',6'- and 3,4,3',4'-TCBs were significantly weak. The inhibition sites of 2,3,2',3'-, 2,4,2',4'-, and 2,5,2',5'-TCBs in succinate oxidase were succinate dehydrogenase and cytochrome b-c segment of the electron transport chain. In the cytochrome b-c segment, these TCBs acted on myxothiazol-sensitive site rather than antimycin-sensitive site. Cytochrome c oxidase was hardly affected by TCBs. These results indicate that 2,3,2',3'-, 2,4,2',4'-, and 2,5,2',5'-TCBs severely depress the electron transfer with succinate as the substrate, which secondarily reduces the synthesis of ATP. The relationship between the activity and chemical structure of TCBs is also discussed.  相似文献   

18.
A number of unknown ATP analogues is isolated when studying the structure of the active site of catalytic histonekinase subunit. Adenosine-5'-chloromethanepyrophosphonate adenosine-5'-(beta-bromoethanepyrophosphonate) and adenosine-5'-(p-fluorosulphonylphenylphosphate) were isolated under the reaction of chloromethanephosphonic acid, beta-bromoethanephosphonic acid and n-phenolsulphofluoride respectively with AMP imidazolide. Adenosine-5'-(beta-chloroethylphosphate) was obtained from AMP morpholide and ethylenechorohydrine. Adenosine-5'-chloracetylaminomethanephosphonate and adenosine-5'-(p-fluorosulphonylbenzoylaminomethanephosphonate) were obtained in the reaction of chloroacetyc anhydride and n-fluorosulphonylbenzoylchloride. Adenosine-5'-(p-aminophenylphosphate) is synthesized under the reduction of AMP mononitrophenyl ester. The treatment of the former with chloroacetyc anhydride produced adenosine-5'-(p-chloroacetylaminophenylphosphate. Interaction of ATP analogues obtained and also of early synthesized adenosine-5'-chloromethanephosphonate and adenosine-5'-(beta-bromoethanephosphonate) with homogenous catalytic histonekinase subunit is studied. The decrease in the reaction rate of Hi histone phosphorylation is found to take place. pH optimum of the enzyme inactivation with adenosine-5'-chloromethanepyrophosphonate and adenosine-5'-(beta-chloroethylphosphate) and the protective effect of the substrate (ATP) indicate covalent blocking imidazole ring in the active site. The date obtained suggest that the functional group of the active site of catalytic histonekinase subunit is histidine imidazole ring located close to terminal ATP phosphate.  相似文献   

19.
The mammalian 2'-5' oligoadenylate synthetases (2'-5'OASs) are enzymes that are crucial in the interferon-induced antiviral response. They catalyze the polymerization of ATP into 2'-5'-linked oligoadenylates which activate a constitutively expressed latent endonuclease, RNaseL, to block viral replication at the level of mRNA degradation. A molecular evolutionary analysis of available OAS sequences suggests that the vertebrate genes are members of a multigene family with its roots in the early history of tetrapods. The modern mammalian 2'-5'OAS genes underwent successive gene duplication events resulting in three size classes of enzymes, containing one, two, or three homologous domains. Expansion of the OAS gene family occurred by whole-gene duplications to increase gene content and by domain couplings to produce the multidomain genes. Evolutionary analyses show that the 2'-5'OAS genes in rodents underwent gene duplications as recently as 11 MYA and predict the existence of additional undiscovered OAS genes in mammals.  相似文献   

20.
R Kierzek  L He    D H Turner 《Nucleic acids research》1992,20(7):1685-1690
Oligoribonucleotides with 2'-5' linkages have been synthesized on solid support. UV melting and CD experiments indicate complementary strands associate to give complexes with melting temperatures 30 to 40 degrees C lower than for duplexes formed by 3'-5' oligoribonucleotides with the same sequence. UV melting and imino proton NMR spectra and NOEs for (2'-5') CGGCGCCG are consistent with formation of an antiparallel duplex. The results suggest greater duplex stability was one factor favoring 3'-5' over 2'-5' linkages in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号