首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
HIV immunity is likely CD4 T cell dependent. HIV-specific CD4 T cell proliferative responses are reported to correlate inversely with virus load and directly with specific CD8 responses. However, the phenotype and cytokine profile of specific CD4 T cells that correlate with disease is unknown. We compared the number/function of Gag p24-specific CD4 T cells in 17 HIV-infected long-term nonprogressors (LTNPs) infected for a median of 14.6 years with those of 16 slow progressors (SPs), also HIV infected for a median of 14 years but whose CD4 count had declined to <500 cells/ micro l. Compared with SPs, LTNPs had higher numbers of specific CD4s that were double positive for IFN-gamma and IL-2 as well as CD28 and IL-2. However, CD4 T cells that produced IL-2 alone (IL-2(+)IFN-gamma(-)) or IFN-gamma alone (IFN-gamma(+)IL-2(-)) did not differ between LTNPs and SPs. The decrease in p24-specific CD28(+)IL-2(+) cells with a concomitant increase of p24-specific CD28(-)IL-2(+) cells occurred before those specific for a non-HIV Ag, CMV. p24-specific CD28(-)IL-2(+) cells were evident in LTNPs and SPs, whereas the CMV-specific CD28(-)IL-2(+) response was confined to SPs. The difference between LTNPs and SPs in the Gag p24 IFN-gamma(+)IL-2(+) response was maintained when responses to total Gag (p17 plus p24) were measured. The percentage and absolute number of Gag-specific IFN-gamma(+)IL-2(+) but not of IFN-gamma(+)IL-2(-) CD4s correlated inversely with virus load. The Gag-specific IFN-gamma(+)IL-2(+) CD4 response also correlated positively with the percentage of Gag-specific IFN-gamma(+) CD8 T cells in these subjects. Accumulation of specific CD28(-)IL-2(+) helpers and loss of IFN-gamma(+)IL-2(+) CD4 T cells may compromise specific CD8 responses and, in turn, immunity to HIV.  相似文献   

2.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

3.
CD8(+) T cells depend on the alphabeta TCR for Ag recognition and function. However, Ag-activated CD8(+) T cells can also express receptors of the innate immune system. In this study, we examined the expression of NK receptors on a population of CD8(+) T cells expressing high levels of CD44 (CD8(+)CD44(high) cells) from normal mice. These cells are distinct from conventional memory CD8(+) T cells and they proliferate and become activated in response to IL 2 via a CD48/CD2-dependent mechanism. Before activation, they express low or undetectable levels of NK receptors but upon activation with IL-2 they expressed significant levels of activating NK receptors including 2B4 and NKG2D. Interestingly, the IL-2-activated cells demonstrate a preference in the killing of syngeneic tumor cells. This killing of syngeneic tumor cells was greatly enhanced by the expression of the NKG2D ligand Rae-1 on the target cell. In contrast to conventional CD8(+) T cells, IL-2-activated CD8(+)CD44(high) cells express DAP12, an adaptor molecule that is normally expressed in activated NK cells. These observations indicate that activated CD8(+)CD44(high) cells express receptors of both the adaptive and innate immune system and may play a unique role in the surveillance of host cells that have been altered by infection or transformation.  相似文献   

4.
Classical CD4(+) and CD8(+) T cells recognize Ag presented by MHC class II (MHCII) and MHC class I (MHCI), respectively. However, our results show that CD4(-/-) mice mount a strong, readily detectable CD8(+) T cell response to MHCII-restricted epitopes after a primary bacterial or viral infection. These MHCII-restricted CD8(+)CD4(-) T cells are more similar to classical CD8(+) T cells than to CD4(+) T cells in their expression of effector functions during a primary infection, yet they also differ from MHCI-restricted CD8(+) T cells by their inability to produce high levels of the cytolytic molecule granzyme B. After resolution of a primary infection, epitope-specific MHCII-restricted T cells in CD4(-/-) mice persist for a long period of time as memory T cells. Surprisingly, upon reinfection the secondary MHCII-restricted response in CD4(-/-) mice consists mainly of CD8(-)CD4(-) T cells. In contrast to CD8(+) T cells, MHCII-restricted CD8(-)CD4(-) T cells are capable of producing IL-2 in addition to IFN-gamma and thus appear to have attributes characteristic of CD4(+) T cells rather than CD8(+) T cells. Therefore, MHCII-restricted T cells in CD4(-/-) mice do not share all phenotypic and functional characteristics with MHCI-restricted CD8(+) T cells or with MHCII-restricted CD4(+) T cells, but, rather, adopt attributes from each of these subsets. These results have implications for understanding thymic T cell selection and for elucidating the mechanisms regulating the peripheral immune response and memory differentiation.  相似文献   

5.
The repeated injection of low doses of bacterial superantigens (SAg) is known to induce specific T cell unresponsiveness. We show in this study that the spleen of BALB/c mice receiving chronically, staphylococcal enterotoxin B (SEB) contains SEB-specific CD4(+) TCRBV8(+) T cells exerting an immune regulatory function on SEB-specific primary T cell responses. Suppression affects IL-2 and IFN-gamma secretion as well as proliferation of T cells. However, the suppressor cells differ from the natural CD4(+) T regulatory cells, described recently in human and mouse, because they do not express cell surface CD25. They are CD152 (CTLA-4)-negative and their regulatory activity is not associated with expression of the NF Foxp3. By contrast, after repeated SEB injection, CD4(+)CD25(+) splenocytes were heterogenous and contained both effector as well as regulatory cells. In vivo, CD4(+)CD25(-) T regulatory cells prevented SEB-induced death independently of CD4(+)CD25(+) T cells. Nevertheless, SEB-induced tolerance could not be achieved in thymectomized CD25(+) cell-depleted mice because repeated injection of SEB did not avert lethal toxic shock in these animals. Collectively, these data demonstrate that, whereas CD4(+)CD25(+) T regulatory cells are required for the induction of SAg-induced tolerance, CD4(+)CD25(-) T cells exert their regulatory activity at the maintenance stage of SAg-specific unresponsiveness.  相似文献   

6.
7.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

8.
CD8(+) effector T cells recognize malignant cells by monitoring their surface for the presence of tumor-derived peptides bound to MHC class I molecules. In addition, tumor-derived Ags can be cross-presented to CD8(+) effector T cells by APCs. IFN-gamma production by CD8(+) T cells is often critical for tumor rejection. However, it remained unclear whether 1) CD8(+) T cells secrete IFN-gamma in response to Ag recognition on tumor cells or APCs and 2) whether IFN-gamma mediates its antitumor effect by acting on host or tumor cells. We show in this study that CD8(+) effector T cells can reject tumors in bone marrow-chimeric mice incapable of cross-presenting Ag by bone marrow-derived APCs and that tumor rejection required host cells to express IFN-gammaR. Together, CD8(+) effector T cells recognize Ag directly on tumor cells, and this recognition is sufficient to reject tumors by IFN-gamma acting on host cells.  相似文献   

9.
Studies in IFN-gamma-deficient mice suggest that the delivery of IFN-gamma to CD8(+) T cells early in virus infection programs their eventual contraction, thereby reducing the abundance of CD8(+) memory T cells. In this study, we show that such mice fail to completely eliminate virus infection and that, when evaluated without the confounding factor of persisting Ag, both CD4(+) and CD8(+) T cells undergo profound contraction when they are unable to receive IFN-gamma signals. Furthermore, the abundance of CD4(+) and CD8(+) memory cells that express the IFN-gamma receptor is approximately 100-fold higher than cells lacking this molecule. Thus, direct IFN-gamma signaling is not required for T cell contraction during virus infection, and it enhances, rather than suppresses, the development of virus-specific CD4(+) and CD8(+) T cell memory.  相似文献   

10.
CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.  相似文献   

11.
The role of CD4(+) vs CD8(+) T cells in contact hypersensitivity (CHS) remains controversial. In this study, we used gene knockout (KO) mice deficient in CD4(+) or CD8(+) T cells to directly address this issue. Mice lacking either CD4(+) or CD8(+) T cells demonstrated depressed CHS responses to dinitrofluorobenzene and oxazolone compared with wild-type C57BL/6 mice. The depression of CHS was more significant in CD8 KO mice than in CD4 KO mice. Furthermore, in vivo depletion of either CD8(+) T cells from CD4 KO mice or CD4(+) T cells from CD8 KO mice virtually abolished CHS responses. Lymph node cells (LNCs) from hapten-sensitized CD4 and CD8 KO mice showed a decreased capacity for transferring CHS. In vitro depletion of either CD4(+) T cells from CD8 KO LNCs or CD8(+) T cells from CD4 KO LNCs resulted in a complete loss of CHS transfer. LNCs from CD4 and CD8 KO mice produced significant amounts of IFN-gamma, indicating that both CD4(+) and CD8(+) T cells are able to secrete IFN-gamma. LNCs from CD8, but not CD4, KO mice were able to produce IL-4 and IL-10, suggesting that IL-4 and IL-10 are mainly derived from CD4(+) T cells. Intracellular cytokine staining of LNCs confirmed that IFN-gamma-positive cells consisted of CD4(+) (Th1) and CD8(+) (type 1 cytotoxic T) T cells, whereas IL-10-positive cells were exclusively CD4(+) (Th2) T cells. Collectively, these results suggest that both CD4(+) Th1 and CD8(+) type 1 cytotoxic T cells are crucial effector cells in CHS responses to dinitrofluorobenzene and oxazolone in C57BL/6 mice.  相似文献   

12.
CD8(+)CD60(+) T cells (80-98% CD45RO(+); 20% CD23(+)) are significantly increased in the blood of serum IgE(+) ragweed-sensitized (RS) compared with serum IgE-nonatopic humans (p = 0.001). CD8(+)CD60(+) T cells of the RS patients produced IL-2, IL-4, IL-10, IL-12, IFN-alpha. and IFN-gamma, but not IL-6 or IL-13. When their PBMC were cultured with ragweed Ag (RA), peak IgE responses occurred on day 10; none was induced with non-cross-reacting or without Ag; nonatopic PBMC did not respond to any stimulant. When either CD4(+) or CD8(+)CD60(+) T cells were depleted from RS PBMC before culture with RA, no IgE responses were induced. If purified CD4(+) T cells or low numbers of CD8(+)CD60(+) T cells were added back to the depleted PBMC, IgE responses were restored. However, higher numbers of CD8(+)CD60(+) T cells totally suppressed IgE responses. Total suppression also was obtained when RS PBMC were cultured with RA and either anti-IL-2, IL-4, IL-10, IL-12, IFN-gamma (all concentrations), or IFN-alpha (low concentrations), but not anti-IL-6 or IL-13. Higher concentrations of anti-IFN-alpha potentiated IgE responses.  相似文献   

13.
IL-21, the most recently described member of the common gamma-chain cytokine family, is produced by activated CD4 T cells, whereas CD8 T cells express the IL-21 receptor. To investigate a possible role for IL-21 in the priming of naive CD8 T cells, we examined responses of highly purified naive OT-I CD8 T cells to artificial APCs displaying Ag and B7-1 on their surface. We found that IL-21 enhanced OT-I clonal expansion and supported development of cytotoxic effector function. High levels of IL-2 did not support development of effector functions, but IL-2 was required for optimal responses in the presence of IL-21. IL-12 and IFN-alpha have previously been shown to support naive CD8 T cell differentiation and acquisition of effector functions through a STAT4-dependent mechanism. Here, we show that IL-21 does not require STAT4 to stimulate development of cytolytic activity. Furthermore, IL-21 fails to induce IFN-gamma or IL-4 production and can partially block IL-12 induction of IFN-gamma production. CD8 T cells that differentiate in response to IL-21 have a distinct surface marker expression pattern and are characterized as CD44(high), PD-1(low), CD25(low), CD134(low), and CD137(low). Thus, IL-21 can provide a signal required by naive CD8 T cells to differentiate in response to Ag and costimulation, and the resulting effector cells represent a unique effector phenotype with highly effective cytolytic activity, but deficient capacity to secrete IFN-gamma.  相似文献   

14.
We characterized CD8(+) T cells constitutively expressing CD25 in mice lacking the expression of MHC class II molecules. We showed that these cells are present not only in the periphery but also in the thymus. Like CD4(+)CD25(+) T cells, CD8(+)CD25(+) T cells appear late in the periphery during ontogeny. Peripheral CD8(+)CD25(+) T cells from MHC class II-deficient mice also share phenotypic and functional features with regulatory CD4(+)CD25(+) T cells: in particular, they strongly express glucocorticoid-induced TNFR family-related gene, CTLA-4 and Foxp3, produce IL-10, and inhibit CD25(-) T cell responses to anti-CD3 stimulation through cell contacts with similar efficiency to CD4(+)CD25(+) T cells. However, unlike CD4(+)CD25(+) T cells CD8(+)CD25(+) T cells from MHC class II-deficient mice strongly proliferate and produce IFN-gamma in vitro in response to stimulation in the absence of exogenous IL-2.  相似文献   

15.
Rapid proliferation is one of the important features of memory CD8(+) T cells, ensuring rapid clearance of reinfection. Although several cytokines such as IL-15 and IL-7 regulate relatively slow homeostatic proliferation of memory T cells during the maintenance phase, it is unknown how memory T cells can proliferate more quickly than na?ve T cells upon antigen stimulation. To examine antigen-specific CD8(+) T cell proliferation in recall responses in vivo, we targeted a model antigen, ovalbumin(OVA), to DEC-205(+) dendritic cells (DCs) with a CD40 maturation stimulus. This led to the induction of functional memory CD8(+) T cells, which showed rapid proliferation and multiple cytokine production (IFN-gamma, IL-2, TNF-alpha) during the secondary challenge to DC-targeted antigen. Upon antigen-presentation, IL-18, an IFN-gamma-inducing factor, accumulated at the DC:T cell synapse. Surprisingly, IFN-gamma receptors were required to augment IL-18 production from DCs. Mice genetically deficient for IL-18 or IFN-gamma-receptor 1 also showed delayed expansion of memory CD8(+) T cells in vivo. These results indicate that a positive regulatory loop involving IFN-gamma and IL-18 signaling contributes to the accelerated memory CD8(+) T cell proliferation during a recall response to antigen presented by DCs.  相似文献   

16.
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.  相似文献   

17.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

18.
CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells   总被引:10,自引:0,他引:10  
It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis.  相似文献   

19.
The immunodeficiency that follows HIV infection is related to the virus-mediated killing of infected CD4(+) T cells, the chronic activation of the immune system, and the impairment of T cell production. In this study we show that in HIV-infected individuals the loss of IL-7R (CD127) expression defines the expansion of a subset of CD8(+) T cells, specific for HIV as well as other Ags, that show phenotypic (i.e., loss of CCR7 and CD62 ligand expression with enrichment in activated and/or proliferating cells) as well as functional (i.e., production of IFN-gamma, but not IL-2, decreased ex vivo proliferative potential and increased susceptibility to apoptosis) features of effector T cells. Importantly, in HIV-infected individuals the levels of CD8(+)CD127(-) T cells are directly correlated with the main markers of disease progression (i.e., plasma viremia and CD4(+) T cell depletion) as well as with the indices of overall T cell activation. In all, these results identify the expansion of CD8(+)CD127(-) effector-like T cells as a novel feature of the HIV-associated immune perturbation. Further studies are thus warranted to determine whether measurements of CD127 expression on CD8(+) T cells may be useful in the clinical management of HIV-infected individuals.  相似文献   

20.
CTLA-4 (CD152) is actively involved in down-regulating T cell activation and maintaining lymphocyte homeostasis. Our earlier studies showed that targeted engagement of CTLA-4 can down-modulate T cell response and suppress allo- and autoimmune responses. In this study, we report that targeted CTLA-4 engagement can induce immune tolerance to a specific target through selective induction of an Ag-specific CD4(+)CD25(+)CTLA-4(high) regulatory T cell (Treg cell) population. Allogeneic cells coated with anti-CTLA-4 Ab induced immune hyporesponsiveness through suppression of proinflammatory cytokines IFN-gamma and IL-2, and up-regulation of the regulatory cytokines IL-10, TGF-beta1, and IL-4, presumably through the engagement of CTLA-4 on activated T cells. Although rechallenge with alloantigen failed to break the unresponsiveness, a transient recovery from tolerance was observed in the presence of high concentrations of exogenous IL-2, saturating concentrations of neutralizing anti-TGF-beta1 and anti-IL-10 Abs, and blocking anti-CTLA-4 Ab, and upon depletion of CD4(+)CD25(+) Treg cells. The CD4(+)CD25(+)CTLA-4(high) Treg cells from tolerant mice suppressed the effector function of CD25(-) T cells from Ag-primed mice. Adoptive transfer of these Treg cells into Ag-primed mice resulted in a significantly reduced alloantigen-specific response. Further characterization demonstrated that the Treg cells with memory phenotype (CD62L(-)) were more potent in suppressing the alloantigen-specific T cell response. These results strongly support that the targeted engagement of CTLA-4 has therapeutic potential for the prevention of transplant rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号